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Abstract 

Eichler, Jeronimo Sirotheau de Almeida; Casanova, Marco Antonio 
(advisor). Exploring RDF Knowledge Bases through Serendipity 
Patterns. Rio de Janeiro, 2018. 82p. Tese de Doutorado - Departamento 
de Informática, Pontifícia Universidade Católica do Rio de Janeiro. 

Serendipity is defined as the discovery of a thing when one is not searching 

for it. In other words, serendipity means the discovery of information that provides 

valuable insights by unveiling unanticipated knowledge. The topic is receiving 

increased attention in the literature, since the precision requirement may be 

justifiably relaxed in order to improve user satisfaction. A field that can benefit 

from serendipity is the Web of Data, an immense global data space where data is 

publicly available. As more and more data become available in this data space, 

searching and extracting relevant information becomes a challenging task. This 

thesis contributes to addressing this challenge in two ways. First, it presents a 

query orchestration process that introduces three strategies to inject serendipity 

patterns in the query process. The serendipity patterns are inspired by basic 

characteristics of serendipitous events, such as, analogy and disturbance, and 

can be used for augmenting the results with additional information, suggesting 

alternative queries or rebalancing the results. Second, it introduces a benchmark 

dataset that can be used to compare different approaches for locating 

serendipitous content. The strategy adopted for constructing the dataset consists 

of dividing the dataset into partitions based on a global feature and linking entities 

from different partitions according to the number of paths they share. 

Keywords 
Linked Data; Serendipity; Information Retrieval; Data Mining. 
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Resumo 

Eichler, Jeronimo Sirotheau de Almeida; Casanova, Marco Antonio 
(orientador).  Explorando Bases de Conhecimento em RDF através de 
Padrões de Fortuidade. Rio de Janeiro, 2018. 82p. Tese de Doutorado - 
Departamento de Informática, Pontifícia Universidade Católica do Rio de 
Janeiro. 

Fortuidade pode ser definida como a descoberta de algo que não está 

sendo buscado. Em outras palavras, fortuidade trata da descoberta de 

informação que provê valiosas intuições ao desvendar conhecimento 

inesperado. O tópico vem recebendo bastante atenção na literatura, uma vez 

que precisão pode ser justificadamente relaxada com o objetivo de aumentar a 

satisfação do usuário. Uma área que pode se beneficiar com fortuidade é a área 

de dados interligados, um gigantesco espaço de dados no qual dados são 

disponibilizados publicamente. Buscar e extrair informação relevante se torna 

uma tarefa desafiadora à medida que cada vez mais dados se tornam 

disponíveis nesse ambiente. Esta tese contribui para enfrentar este desafio de 

duas maneiras. Primeiro, apresenta um processo de orquestração de consulta 

que introduz três estratégias para injetar padrões de fortuidade no processo de 

consulta. Os padrões de fortuidade são inspirados em características básicas de 

eventos fortuitos, como analogia e perturbação, e podem ser usados para 

estender os resultados com informações adicionais, sugerindo consultas 

alternativas ou reordenando os resultados. Em segundo lugar, introduz uma 

base de dados que pode ser utilizada para comparar diferentes abordagens de 

obtenção de conteúdo fortuito. A estratégia adotada para construção dessa base 

de dados consiste em dividir o universo de dados em partições com base em um 

atributo global e conectar entidades de diferentes partições de acordo com o 

número de caminhos compartilhados. 

Palavras-chave 
Dados Interligados; Fortuidade; Aquisição de Informação; Mineração de 

Dados. 
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He who does not expect will not find out the unexpected,  

for it is trackless and unexplored. 
Heraclitus of Ephesus 
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1                                                                                   
Introduction 

1.1.Context and Motivation 

In recent years, the World Wide Web has evolved from a global information 

space of linked documents to a space where data can also be linked. This new 

paradigm of Web of Data, in addition to the Web of Documents, provides ways to 

make data more accessible and build knowledge from combined data. From the 

user’s perspective, the main goal of Linked Data is the provision of integrated 

access to data from a wide range of distributed and heterogeneous data sources 

(Bizer et al. 2009). 

To support these goals, the Linked Data initiative (Berners-Lee 2009) has 

emerged as a set of best practices that aims at standardizing the linking data 

process. Thanks to this, an unprecedented amount of linked data sources was 

recently produced, and continues growing fast covering diverse domains - such 

as geographic locations, people, companies, books, films, music, statistical data 

and scientific publications (Heath & Bizer 2011).  

At the time of this writing, the Linked Open Data cloud (LOD cloud), a 

repository for interlinked Linked Data datasets, contains 1,184 datasets and 

aggregates more than 198 trillion triples (Abele et al. 2017), as depicted in Figure 

1. DBpedia1, the Linked Data version of Wikipedia repository, contains alone 

almost 10 trillion triples (Abele et al. 2017). 

                                                
1 http://wiki.dbpedia.org/ 
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Figure 1: LOD cloud diagram2 in 2017 

As a consequence of this initial progress, a new challenge arose. With the 

proliferation of Linked Data datasets and more and more data becoming 

available, filtering these large datasets in order to support a goal becomes a 

challenging task.  

Similarly to the Web of Documents, in the Web of Data, the overall 

approach adopted by search applications is to locate resources that are strongly 

related to the user’s needs. Thereby, the main goal is to maximize the accuracy 

among the search results.  

However, studies (Murakami et al. 2007, Ge et al. 2010) argue that this 

strategy alone may conduct the user into a new set of problems and, thereby, 

decrease the user satisfaction. For instance, an application that only considers 

accuracy can imprison the user in an information bubble where he is only 

exposed to information of a certain niche or, even worse, to a kind of information 

he already knows. These studies argue that other factors, such as surprise and 

discovery, can improve user satisfaction even at the cost of a small loss in 

precision. For this reason, these studies suggest that other metrics, such as 

serendipity, ought to be considered in order to analyze the user satisfaction. 

Serendipity is receiving increased attention in the literature as a process 

of breakthrough discovery caused by chance encounters (André 2009a). 

According to André (2009a), serendipity involves the surprise of finding 

                                                
2 http://lod-cloud.net/ 
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something unexpected, and the sagacity necessary to unveil an unexpected 

connection. 

This way, strategies that induce serendipitous suggestion can improve user 

satisfaction by challenging the user to pursue new directions and discover further 

information.  

1.2.Goal and Contributions 

This thesis reports contributions to Linked Data search. More specifically, we 

adopt serendipitous concepts in order to suggest unexpected items and better 

support user’s goals. 

Our first contribution is a query orchestration process that describes 

different strategies to adapt the query execution with the objective of providing a 

set of behaviors in order to produce a more complete response for the user’s 

goals. 

A second contribution of our thesis is the definition and formalization of a 

set of serendipity patterns in the context of Linked Data search. These 

serendipity patterns capture serendipitous connections on live Linked Data 

datasets. 

The first and second contributions are validated with SOL-Tool, a Linked 

Data application that implements theirs concepts and ideas. The experimental 

results present a promising score of 90% of unexpectedness for real-world 

scenarios in the music domain. 

Our third contribution is a benchmark creation process that defines the 

necessary steps for building a dataset that exploits Linked Data resources. The 

steps are structured and can be extended to capture different particularities of the 

retrieved data, the given domain or the benchmark goal. The dataset construction 

process also discusses the main challenges and design decisions that impact the 

dataset creation. 

Our fourth contribution is a benchmark created to support the evaluation 

of approaches that present serendipitous suggestions for the movies domain, the 

Serendipity Movie Test Dataset. In order to create the suggestions, the 

benchmark considers entities, graphs and paths extracted from the LOD cloud 

that pertain to the movies domain. 

An additional contribution of this thesis is a related work overview of the 

state-of-the-art of the strategies and applications that use serendipity to support 

users' goals. 
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1.3.Structure of the Thesis 

The remainder of this thesis is structured as follows. In Chapter 2, we introduce 

the background concepts that are used throughout the thesis. More specifically, 

we first present Linked Data definition and examples and then we review the 

serendipity literature by discussing the notion of serendipity and examining a set 

of serendipity patterns. In Chapter 3, we describe a query orchestration process 

that enables the customization of different phases of the query execution. Still in 

Chapter 3, we introduce three strategies to inject serendipity in the query 

process. In Chapter 4, we formalize a set of serendipity patterns to capture 

serendipity in the context of Linked Data search. In Chapter 5, we describe the 

SOL-Tool application, which implements the query orchestration process and 

encompasses a set of the serendipity patterns. Also, in Chapter 5, we present the 

experiments with the tool. In Chapter 6, we describe the Serendipity Movie Test 

Dataset, a benchmark dataset that can be used to compare different approaches 

for locating serendipitous content. Still in Chapter 6, we present the necessary 

steps for building the dataset. In Chapter 7, we provide an overview of the state-

of-the-art in the field by combining the topics of serendipity and Linked Data 

search engines. Finally, in Chapter 8, we draw the conclusions and indicate 

opportunities of future work. 
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2                                                                                 
Background 

2.1. Linked Data Background 

Since the projects presented in this thesis use data extracted from the LOD 

cloud, we start by recalling a few concepts related to the Resource Description 

Framework (RDF) data model (Cyganiak et al. 2014) and SPARQL query 

language (Harris & Seaborne 2013).  

A Uniform Resource Identifier (URI) represents an entity of the real world. A 

literal is a string representing a (datatype) value. An RDF term is a URI or a 

literal. Table 1 depicts examples of URIs from The Beatles members in DBpedia. 

Table 1: URI examples 

URI 

http://dbpedia.org/resource/John_Lennon 

http://dbpedia.org/resource/Paul_McCartney 

http://dbpedia.org/resource/George_Harrison 

http://dbpedia.org/resource/Ringo_Starr 

 

The RDF data model allows shortening a URI reference by declaring a 

namespace that depicts the set of URIs in a vocabulary. For example, by 

describing the DBpedia resources namespace as dbr, one may refer to 

http://dbpedia.org/resource/John_Lennon entity as 

dbr:John_Lennon. This is not a mandatory requirement but we adopt the 

notation in this study for a matter of readability. 

Table 2 lists the namespaces and vocabularies that are referenced in this 

study. The sol namespace presents terms that are declared in this thesis. 
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Table 2: Namespaces 

Namespace Vocabulary 

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# 

rdfs http://www.w3.org/2000/01/rdf-schema# 

owl http://www.w3.org/2002/07/owl# 

dct http://purl.org/dc/terms/ 

skos http://www.w3.org/2004/02/skos/core# 

dbr http://dbpedia.org/resource/ 

dbc http://dbpedia.org/resource/Category: 

dbo http://dbpedia.org/ontology/ 

dbp http://dbpedia.org/property/ 

mdb http://data.linkedmdb.org/resource/ 

movie http://data.linkedmdb.org/resource/film/ 

foaf http://xmlns.com/foaf/0.1/ 

sol http://soltool.com/ 

 

Entities are typically assigned to classes, which may in turn be organized 

as a class hierarchy. This is captured in RDF with the help of the predefined 

terms rdf:type, rdfs:Class and rdfs:subclassOf, where the first term 

belongs to the RDF vocabulary and the last two terms to the RDF Schema 

vocabulary. The term owl:Thing of the OWL vocabulary denotes the universe, 

i.e., the set of all things.  

An RDF triple is a statement (s,p,o), where s and p are URIs and o is either 

a URI or a literal; a triple (s,p,o) states that its subject s has property p whose 

value is object o. We disregard the so-called blank nodes, which could always be 

replaced by Skolem URIs (Cyganiak et al. 2014).  

We also take into consideration the annotation property rdfs:seeAlso 

and the OWL property owl:sameAs. rdfs:seeAlso is used to indicate an 

entity that might provide additional information about the subject entity, whereas 

the owl:sameAs property is used to indicate that two URI references refer to the 

same thing i.e. they represent the same real-world object. 

Table 3 illustrates examples of RDF triples declared in DBpedia. 
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Table 3: RDF triple examples 

Subject Property Object 

dbr:John_Lennon dct:subject dbc:English_rock_guitarists 

dbr:John_Lennon dct:subject dbc:English_rock_singers 

dbr:Imagine:_John_Lennon dbo:musicComposer dbr:John_Lennon 

dbr:Paul_McCartney dct:subject dbc:English_rock_guitarists 

dbr:Paul_McCartney dct:subject dbc:English_rock_singers 

dbr:Spies_Like_Us dbo:musicComposer dbr:Paul_McCartney 

dbr:Ringo_Starr dct:subject dbc:English_rock_drummers 

 

Figure 2 is a graphic representation of the data presented in Table 2. We 

use the Box-Arrow Notation to represent the RDF triples, with boxes representing 

subjects and objects of RDF triples, while arrows represent properties of RDF 

triples. 

 

Figure 2: RDF triple examples 

We use the SPARQL query language (Harris & Seaborne 2013) to access 

datasets. A SPARQL query is composed of a set of triple patterns (?s,?p,?o) 

where ?s and ?p can be URIs or variables and ?o may be either a URI, a literal or 

a variable. If a triple matches all the triple patterns of a SPARQL query, it is 

understood as a solution for that query. Furthermore, the solutions of a SPARQL 

query can be projected into a list of variables, for a select query, or a list of 

triples, for a construct query. 
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The SPARQL query below selects all entities that are presented in a triple 

which property matches dct:subject and object matches 

dbc:English_rock_singers. Therefore, according to Table 3, the entities 

dbr:Paul_McCartney and dbr:John_Lennon are to be presented among the 

query results. 

Selecting English rock singers 
PREFIX dct:      <http://purl.org/dc/terms/>  
PREFIX dbc:      <http://dbpedia.org/resource/Category:>  
 
SELECT distinct ?subject WHERE{ 

?subject dct:subject dbc:English_rock_singers.  
} 

 

 

 

2.2. Serendipity Background 

Serendipity is defined as “the art of making an unsought finding” (Van Andel 

1994). The term was coined by Horace Walpole, based on the tale of The Three 

Princes of Serendip, wherein the mentioned princes made several discoveries of 

things they were not looking for by accident and sagacity. In the literature, the 

term serendipity is used to describe a breakthrough discovery caused by chance 

encounters (André 2009a). As described in (André 2009a), there are two key 

aspects of serendipity: the accidental nature and the surprise of finding 

something unexpected, the chance; the breakthrough or discovery made by 

drawing an unexpected connection, the sagacity. That is, serendipity promotes 

the encounter of unexpected information to provide valuable insights by unveiling 

previously unknown knowledge.  

The topic is receiving increased attention in the literature, since the 

precision requirement may be justifiably relaxed in favor of extended recall if the 

extra information supports the searcher’s current or latent goals. 

 

 

2.2.1. The Information Encounter Experience 

In her study of accidental discovery of information, Erdelez (1999) described four 

elements involved in the information encounter experience: the encounterer, the 

environment, the characteristics of the information encountered, the information 

need. 
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The encounterer is defined as the user who experiences an accidental 

discovery of information. Erdelez (1999) also defined levels of encounterers 

ranging from non-encounterers to super-encounterers, where non-encounterers 

are users that present difficulty in finding information, while super-encounterers 

are users who find information more easily. Although the notion typically 

represents people, we argue that an encounterer can also be understood as an 

agent or application that discovers the information. 

The environment is the place where the information discovery occurs 

(Erdelez 1999). Similarly to the encounterer elements, the environments may 

differ in levels of information capabilities. In other words, some environments may 

be more propitious for information discovery than others. 

According to (Erdelez 1999), the information accidentally encountered can 

be classified as problem-related or interest-related. Problem-related information 

belongs to a user’s specific problem, but not a problem that the user is pursuing 

at the time the information was encountered. Therefore, problem-related 

information supports latent goals (De Bruijn & Spence 2008), a topic that is later 

discussed in this thesis. On the other hand, interest-related information depicts 

information that the user would probably not search beforehand in spite of its 

potential use. 

The information encountering experience can also be classified by the 

relation between the information found and the need that it addresses. For 

example, information may lose its relevance with time, e.g., a weather condition. 

This way, a serendipity event may be enhanced or even induced by 

favoring the information encounter experience factors. Thus, a critical factor for 

achieving serendipity is the ability of the encounterer to draw connections 

between pieces of information to build new information, in other words, the 

encounterer’s sagacity (André 2009a). To support this goal, the encounterer must 

have the ability to compare models from different domains and recognize similar 

concepts. We adopt similar strategy to capture the serendipity patterns in our 

query orchestration process.  

Due to its characteristics, the Web of Data with networks of data to be 

navigated and explored represents an especially auspicious environment for 

serendipity events. 
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2.2.2. Serendipity Patterns 

In an extensive study of serendipity, Van Andel (1994) lists seventeen serendipity 

patterns, each one representing a different form in which serendipity can occur. 

In this section, we concentrated on the patterns that we found to be best 

amenable to be captured in the context of Linked Data search. 

The analogy pattern is characterized by seeking similarity between objects 

from the same or totally distinct domains (Van Andel 1994). Analogy is also 

defined as seeing (or describing) something in terms of something else (Burke 

1941). Basically, it consists of extracting relevant characteristics of an object in 

order to apply this knowledge to identify another object. A widely popular 

example of analogy is the insight of Archimedes to measure a crown’s volume 

after stepping into a bathtub. 

The surprising observation pattern is characterized by surprise caused by 

an unexpected event. It indicates a trail that can lead to new information about a 

known entity and represents the fact that some entities can have different facets 

(or views) covering different domains. A subpattern of surprising observation is 

the repetition of surprising observation. As the name implies, it involves the 

recurrence of the previous pattern and serves as a strong indication of the 

relevance of the respective observation. To illustrate the repetition of the 

surprising observation pattern, Van Andel (1994) cites the discovery of AIDS as 

an epidemic after registering a high number of cases. 

The inversion pattern changes the expectation of the experiment, guiding 

the solution towards a completely new direction. It establishes a breakthrough 

discovery where the insight is the opposite to the previous intent. To illustrate the 

Inversion pattern, Van Andel (1994) tells the story of McLean, that during his 

research of blood clotting factors discovered heparine as anticoagulant, in other 

words, a factor that prevents blood clotting (McLean was investigating a drug that 

caused blood clotting). 

The wrong hypothesis pattern is characterized by the experience of 

evaluation of a hypothesis with an outcome that, although proven false, is 

surprising enough to incite the formulation of new hypotheses. The wrong 

hypothesis pattern represents one of the most interesting aspects of serendipity, 

the adaptation to face an unexpected obstacle, which can be summarized in the 

proverbial sentence "When life gives you lemons, make lemonade".    

The disturbance pattern is characterized by a change of perception caused 

by an occurrence that affects the regular activity of a person. The disturbance 
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pattern is fired by a chaotic event that introduces other variables into the problem. 

For example, Van Andel (1994) narrates the creation of Radio-astronomy that 

originated from the noise observed in transatlantic telephone calls, with a 

periodicity of 23 hours and 56 minutes. 

Finally, just to give an example of a pattern which is not amenable to (a 

straightforward) formalization in the context of Linked Data search, we cite 

Introspective Chance Encounter (Lot 1956 apud Van Andel 1994), a super 

category group. Van Andel (1994) assigns three patterns to this (super) category 

– playing, joke and dream. In opposition to the previous patterns, this group 

contains serendipity patterns that occur during intellectual activities (Lot 1956 

apud Van Andel 1994) and, therefore, are not further discussed in the rest of this 

thesis.  
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3                                                                                                  
A Query Orchestration Process for Serendipity 

3.1. Introduction 

To perform a serendipitous search, we apply a query orchestration process 

(Cuppens et al. 1988) that enables the application to transform a submitted 

query. This allows the application to act before or after the query is actually 

executed. Therefore, the application can adopt different strategies at different 

phases of execution. 

We adopt the definition of question, answer and response (Webber 1986) 

in order to describe the interactions of the query orchestration process. Question, 

according to (Webber 1986), represents a request for information or a request to 

performing an act. In serendipitous search, the submitted query plays the role of 

the question. Answer represents the information or act directly requested 

(Webber 1986). In serendipitous search, the answer comprises the results 

acquired by the simple execution of the submitted query, in other words, it is the 

information that satisfies the question. Finally, response comprises the complete 

reaction to the question. Response can be one or the combination of the 

following items: an answer, additional information, information instead of an 

answer, a question, etc (Webber 1986). 

For serendipitous search, the definition of response is useful when the 

answer is not necessarily enough to address the goals manifested in the 

question. The query orchestration processing is used to provide additional 

information for a query. 

We resort to three main strategies to capture the selected serendipity 

patterns with the query orchestration process. Given a query Q, a serendipitous 

processing of Q consists of the combination of the following components: 

Serendipitous response for Q, Serendipitous alternatives for Q and Serendipitous 

rebalancing of Q results. 

We conclude the chapter with a discussion about simulated annealing, a 

metaheuristic for optimization that can be used for managing the level of 

serendipity introduced in the results. 
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3.2.A Framework for Query Orchestration 

In order to design the query orchestration process, we propose the definition of 

conditions and serendipity patterns. 

A condition is a function that evaluates if a RDF term or a set of RDF terms 

satisfy a set of triple patterns in a RDF dataset. Let G be an RDF dataset, t1,…,tn 

be a set of RDF terms and TP be a set triple patterns with v1,…,vn variables. A 

condition replaces vi by ti in TP, for each i ∈ [1,n], and returns true if there is a 

solution of TP found in G, otherwise it returns false. 

The pseudo-code CON1 exemplifies a condition that checks if a given RDF 

term is an English rock guitarist. For example, if the entity dbr:John_Lennon 

and DBpedia are evaluated with CON1, the result is true, while the result is false 

for the entity dbr:Jimmi_Hendrix. 

CON1 Condition with English rock guitarist category 
CONST SUBJECT-PROPERTY:  <http://purl.org/dc/terms/subject>  
CONST RG-CATEGORY: <http://dbpedia.org/resource/Category:English_rock_guitarists>  
 
Function GuitaristCondition (input: entity of RDFTerm, dataset of RDFGraph) 

{ 

If(dataset.contains( Triple (entity, SUBJECT-PROPERTY, RG-CATEGORY))) 
Return true; 

Else 
Return false; 

} 

 
The pseudo-code CON2 exemplifies a composed condition that checks if 

two RDF terms are connected by the parent property.  

CON2 Condition with parenthood relationship 
CONST PARENT-PROPERTY:  <http://dbpedia.org/ontology/parent>  
 
Function ParenthoodCondition (input: father of RDFTerm, son of RDFTerm, dataset 

of RDFGraph) 

{ 

If(dataset.contains( Triple (son, PARENT-PROPERTY, father))) 
Return true; 

Else 
Return false; 

} 

 

Additionally, a condition may depict an occurrence, which any element 

satisfies the triple pattern. The pseudo-code CON3 exemplifies a composed 

condition that checks if two RDF terms are connected by any property. 
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CON3 Condition with any relationship  
 
Function AnyPropertyCondition (input: subject of RDFTerm, object of RDFTerm, 

dataset of RDFGraph) 

{ 

If(dataset.contains( Triple (subject, ANY, object))) 
Return true; 

Else 
Return false; 

} 

 

 

A serendipity pattern is a function that checks a set of conditions and, if all 

conditions return true, a new RDF data graph is returned. Let G be an RDF 

dataset, t1,…,tn be a set of RDF terms and C1,…,Cm be a set of conditions. A 

serendipity pattern returns a new RDF data graph if Ci = true for each i ∈ [1,m]. 

The pseudo-code SP1 exemplifies a serendipity pattern that creates a RDF 

triple connecting two entities through rdfs:seeAlso property if the conditions 

are met i.e. both are English rock guitarists and there is also a property 

dbo:parent connecting them. 

SP1 Serendipity Pattern of CON1 and CON2 
CONST SEEALSO-PROPERTY:  <http://www.w3.org/2000/01/rdf-schema#seeAlso> 
 
Function ParentAndGuitaristPattern (input: father of RDFTerm, son of RDFTerm, 

dataset of RDFGraph) 

{ 

If( GuitaristCondition(father,dataset)  
AND GuitaristCondition(son,dataset) 
AND ParenthoodCondition(father, son, dataset) 

) 
Return Triple (father, SEEALSO-PROPERTY, son); 

Else 
Return null; 

} 

 

The construction of the serendipity patterns using composition of conditions 

allows the creation of a set of serendipity patterns that use different and 

independent conditions to present the same relationship. This can be very useful 

for representing a generic output that can be generated from different sets of 

query patterns. For example, there may be a catalogue of serendipity patterns 

specialized in analogy. 

It is worth noticing that the code of SP1 can be translated in the SPARQL 

query below without any loss of expressivity. 
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SPQ1 Example of serendipity pattern represented as SPARQL query  
PREFIX dct:      <http://purl.org/dc/terms/>  
PREFIX dbo:      <http://dbpedia.org/ontology/>  
PREFIX dbc:      <http://dbpedia.org/resource/Category:>  
PREFIX rdfs:     <http://www.w3.org/2000/01/rdf-schema#>  
 
CONSTRUCT {?baseEntity rdfs:seeAlso ?surpriseEntity} WHERE { 

?baseEntity dbo:parent ?surpriseEntity. 
?baseEntity dct:subject dbc:English_rock_guitarists. 
?surpriseEntity dct:subject dbc:English_rock_guitarists. 

} 

 
Finally, the SPARQL query is transformed into a SPARQL query template. 

This way, the query orchestration process is able to fill in the [input] field with a 

RDF term originated from a previous interaction and process a secondary query 

that retrieves results related to a specific entity. 

For example, SPQT1 depicts the final representation of the serendipity 

pattern illustrated in SPQ1 and SP1. 

SPQT1 Example of serendipity pattern query template 
PREFIX dct:      <http://purl.org/dc/terms/>  
PREFIX dbo:      <http://dbpedia.org/ontology/>  
PREFIX dbc:      <http://dbpedia.org/resource/Category:>  
PREFIX rdfs:     <http://www.w3.org/2000/01/rdf-schema#>  
 
CONSTRUCT {[input] rdfs:seeAlso ?surpriseEntity} WHERE { 

[input] dbo:parent ?surpriseEntity. 
[input] dct:subject dbc:English_rock_guitarists. 
?surpriseEntity dct:subject dbc:English_rock_guitarists. 

} 

 

It is worth noticing that the serendipity pattern representation in a query 

template simplifies the task of sharing the serendipity patterns across different 

platforms. For example, a generic query processor can read the serendipity 

pattern templates in order to embody serendipity amongst its search process. 

Moreover, the user can submit his own serendipity pattern query templates 

in order to inform the query orchestration process what conditions does he want 

to disclose. Therefore, the query execution is able to process the user’s query, 

retrieve the results and also finding content related to the results according to the 

user’s definition of what serendipity is.  

Additionally, each serendipity pattern presents not only a query template 

but also metadata that the query orchestration process can use to adapt the 

query execution. The serendipity pattern metadata include: (1) description of the 

input parameters; (2) limit data that defines the maximum number of triples return 

by the serendipity pattern; (3) a list of dataset endpoints, which the query 

orchestration process can submit the serendipity pattern. 

In addition, the query orchestration process retrieves metadata regarding 

the serendipity pattern execution, such as the average number of RDF triples 
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found by each serendipity pattern and the average rating collected with the users. 

This allows the query orchestration process to learn what serendipity patterns are 

more useful and, subsequently, adapt its behavior. 

 

3.3. Serendipitous response for a query 

Given a query Q, a Serendipitous response for Q will add new triples to each 

result of Q. More precisely, let D1,…,Dm be a set of datasets, called the query 

environment, Q be a query over Dk, with k ∈ [1,m], X1,…,Xp be a set of 

serendipity patterns. A serendipitous response for Q over D1,…,Dm is a list of 

pairs of sets ((A1,S1),…,(An,Sn)) such that, for each i ∈ [1,n], Ai is a result of Q 

over Dk, called the regular component of (Ai,Si), and Si is a set of triples, called 

the serendipitous component of (Ai,Si), computed from the datasets in the query 

environment, according to the serendipity pattern Xj, with j ∈ [1,p]. Additionally, 

the Serendipitous response for Q may use results of a previously submitted query 

Q' in order to compute the current serendipitous component. 

We note that the triples in a serendipitous component Si may use terms in 

the vocabulary and refer to entities outside the query environment. Indeed, the 

analogy and the surprising observation patterns, presented in the next chapter, 

are formalized as new queries that return triples which are serendipitously related 

to the original result of Q. Such triples will form the second set in each pair of sets 

in the result list.  

Consider that a user is searching for English rock guitarists using 

DBpedia. To address his goal the user may use the category English rock 

guitarists to formulate the query. The regular component of the result list includes 

entities that match the solution mapping of the query, such as, “Mick Jagger”, 

“George Harrison”, and “John Lennon”. The serendipitous component contains a 

set of triples that serendipitously connect new entities to those in the result list. 

For example, the serendipitous component may return a set of triples linking 

“John Lennon” to “Roy Harper” or “Ringo Starr”, based on a specified criterion. 

The following chapter discusses the strategies to capture each serendipity 

pattern. To simplify the discussion, all examples consider a query, referred to as 

UQ1, about English rock guitarists: 
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UQ1 Entities from English rock guitarist category 
PREFIX dct:      <http://purl.org/dc/terms/>  
PREFIX dbc:      <http://dbpedia.org/resource/Category:>  
 

SELECT distinct ?entity WHERE{ 

?entity dct:subject dbc:English_rock_guitarists.  

} 

 

 

Note that this query uses the English rock guitarists category of DBpedia 

and the dct:subject property from Dublin Core vocabulary, used to assign 

entities to categories. 

Figure 3 illustrates examples of serendipitous response for the query 

UQ1, that searches for English rock guitarists using DBpedia. In this example, the 

response includes additional information that presents serendipitous content 

related to each result list item. 

 

Figure 3: Serendipitous response 

 

3.4. Serendipitous query alternatives 

Given a query Q, a serendipitous alternative for Q will produce an alternative 

query Q' so that the result list of Q’ presents some relatedness or a level of 

similarity to the result list of Q. This way, a serendipitous alternative enables the 

user to expand his search and encounter content that is not presented in the 

original query. 

Figure 4 illustrates an example of alternative query that presents a similar 

set of results to those of the original query.  
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Figure 4: Result list of an alternative query 

3.5. Serendipitous rebalancing of a query’s results 

The serendipitous rebalancing of Q results will reorder the serendipitous result list 

of Q over the query environment in order to perturb the original query results 

ordering. 

The procedure consists of going through the ordered query results and 

selecting pairs of items that are candidates for order swap. An activation function 

can be used in order to randomly retrieve a set of swap candidate pair items and 

the swap operation is executed only if a comparison between the two items 

satisfies a condition.  

It is worth noticing that the random selection of items represents an 

important role in serendipitous rebalancing of Q results. This way, the procedure 

addresses a fundamental aspect of serendipity, the chance factor. Additionally, 

the activation function can be customized to allow the user to define the 

proportion of candidates to be selected. Therefore, the user is able to choose the 

level of serendipity that the strategy will apply. 

For the pair comparison, the procedure adopts an ordering criterion other 

than the result list ordering. Thus, the swap operation is executed only if the pair 

items possess inverse positions in the ordering lists.  

By introducing an external ordering criterion, the query process is able to 

smooth the impact of the original result list ordering. The external ordering 

criterion guarantees that the swap operation is not groundless. 

It is also worth noticing that the serendipitous rebalancing of Q results may 

take advantage of other serendipity search strategies. For instance, the 

comparison function can order the pair items according to the number of triples 

found in the serendipitous response for Q procedure. 

Figure 5 illustrates how the result lists of a query can be rebalanced.  
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Figure 5: Serendipitous rebalancing 

3.6. Simulated Annealing 

As a serendipitous event, by definition, introduces unexpected items, there is an 

inherent risk of discontent, since the user can consider the results uninteresting 

or worthless if he does not recognize the connection between the results and his 

question (Shani et al. 2011). Iaquinta et al. (2008) argue that a serendipitous 

encounter depends on the characteristics of the information seeker, such as, 

curiosity, open mindedness and cultural background in accordance with Louis 

Pasteur’s quote “chance favors the prepared mind”. Thus, the increase of 

serendipity must be strategically done in order to mitigate the risk of confusing or 

distracting the user (Ge et al. 2010). In the context of information retrieval, this 

concern gains even more importance dealing not only with information overload 

but also with performance, by selectively providing only relevant information to 

the user’s interests.   

Thus, there may be times when a serendipitous search application must 

adopt a strategy to restrict the serendipity of the result set. An approach used for 

similar problems is simulated annealing (Kirkpatrick 1984), a metaheuristic for 

obtaining good solutions to difficult optimization problems at a reasonable 

computing time (Eglese 1990). 

Simulated annealing is a local search algorithm (Szu & Hartley 1987, 

Eglese 1990). A commonly used example that illustrates the simulated annealing 

heuristic is the hill climbing algorithm, which seeks for the maximum of a given 

curve (Lim et al. 2006). The hill climbing algorithm starts with an initial solution, 

perhaps chosen at random, and then, if a neighbor has a higher position than the 

current position, the respective neighbor will become the current solution, and so 

on until there are no higher positions. The problem of this approach is that the 
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algorithm can be trapped in a local optimum solution. To address this issue, the 

simulated annealing algorithm allows a downhill move determined by some 

suitable probabilistic mechanism. Thus, facing a local optimal solution, the 

algorithm introduces a disturbance by adding a small worsening factor to the 

respective solution, thereby enabling the exploration of more suitable solutions.  

Analogously to the descent moves in the hill climbing example, a 

serendipitous connection may represent a costlier operation, with an uncertain 

outcome, than a simple and direct connection. In this eventuality, a mechanism is 

provided for the purpose of deciding if a serendipitous connection should be 

considered or ignored. 

One way to achieve this goal is to let the user evaluate the proposed 

strategies. If a serendipitous search application is able to gather data about user 

interactions, the application is able to understand what the best strategies are for 

the respective user. This way, strategies that are not well appreciated by the user 

may receive lower probabilities for being activated while strategies that are 

commonly used obtain higher probabilities. 

Thus, understanding how the adopted strategies perform plays a crucial 

role for serendipitous search. There are two major approaches to evaluate if a 

given strategy performs well or not. One approach is to let the user rate the 

strategy by asking him to rate how well it addressed his goal. Another approach 

is to track how frequent a strategy is used by assuming that the most used 

strategies are well appreciated by the users. 

For example, consider the serendipitous rebalancing of Q results strategy. 

The referred strategy perturbs the results order so that the user is also exposed 

to an amount of neglected items. However, if the swap items are rarely visited by 

the user, the mentioned strategy should be less frequently activated. 

This way, the application is able to learn what the best strategies are and, 

therefore, to adapt its behavior for the best user experience. 

 

3.7. Chapter Summary 

In this chapter, we describe a query orchestration process that permits the 

application to approach different behaviors for a given submitted query. A query 

orchestration process can be very useful when the normal execution of the query 

does not produce sufficient information to support the user’s goals. 

We present three strategies to capture the selected serendipity patterns 

with the query orchestration process: Serendipitous response for a Query, 
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Serendipitous alternatives for a Query and Serendipitous rebalancing of a Query 

results. 

We present also a discussion about how to manage the level of serendipity 

introduced in the results. 
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4                                                                                 
Serendipity Patterns 

4.1.Introduction 

This chapter discusses how to capture the serendipity patterns of Chapter 2 in 

the context of Linked Data search. It also provides a case study scenario with the 

purpose of illustrating the use of the serendipity patterns. The scenario is based 

on the DBpedia dataset and focuses on the music domain. In this scenario, 

serendipity search can increase the user satisfaction by providing interesting and 

non-obvious artists or songs. 

Inspired by the Information Encounter Experience (Erdelez 1999) 

discussed in Chapter 2, we characterize serendipitous search defining the 

encounterer as the user who submits the query, the environment as a query 

environment with which the user interacts, while the information encountered is 

the results list. We distinguish between a regular component retrieving the 

original results using the classical sorting, and a serendipitous component 

providing surprising results.  

The main objective of this chapter is to formalize a set of serendipity 

patterns in order to: (1) facilitate the user in achieving his goal by exposing him to 

a more diverse set of information; (2) explore information discovery capabilities of 

the environment; (3) provide the user with not only problem-related but also 

interest-related information. 

Since serendipity patterns can be applied in different phases of query 

execution, we formalize the serendipity patterns according to the query 

orchestration process of Chapter 3. 

To capture the analogy, the surprising observation, the latent goal and the 

inversion patterns, we resort to the Serendipitous response for a query strategy. 

In other words, the process explores the results of the user’s query to invoke 

secondary queries with the recently acquired information. 

To capture the wrong hypothesis pattern, we approach the Serendipitous 

alternatives for a query strategy, according to which the process analyzes the 

submitted query and is able to generate alternative queries. This allows the user 

to retarget his search based on an alternative version of his original query.  

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA



35 
 

 

Finally, to capture the disturbance pattern, we apply the Serendipitous 

rebalancing of a query results strategy, whereby the process is able to change 

the order of the result list in order to expose items that the user would normally 

neglect.  

In order to illustrate the serendipity patterns, we resume the UQ1 query. 

This way, all examples are based on English rock guitarists category results. 

UQ1 Entities from English rock guitarist category 
PREFIX dct:      <http://purl.org/dc/terms/>  
PREFIX dbc:      <http://dbpedia.org/resource/Category:>  
 
SELECT distinct ?entity WHERE{ 

?entity dct:subject dbc:English_rock_guitarists.  

} 

 

4.2. Capturing the Analogy Pattern 

To capture analogy, we first introduce a new property, sol:analogousTo, to be 

expressed by triples of the form (s,sol:analogousTo,o), which intuitively indicate 

that entities s and o are analogous.  

More precisely, let Q be a query submitted to a dataset Dk and Ti be a 

result of Q for Dk. If e is an entity that occurs in Ti, then the search process might 

look for or compute a triple of the form (e,analogousTo,o) in Dk and include the 

triple in the serendipitous component corresponding to Ti.  

We propose to compute analogousTo using a family of similarity functions 

adopting the same strategy used to compute the sameAs property, except that 

the properties to be compared would be chosen according to some set of criteria 

appropriate to capture analogy. 

One approach is to define a query context that reflects the interests of a 

group of users. For example, consider the entities “John Lennon” and “Roy 

Harper”, both belonging to the English rock guitarists category and both 

reportedly influenced by the American novelist and poet “Jack Kerouac”, a 

pioneer of the Beat Generation; indeed, “John Lennon” and “Roy Harper” are 

both linked to “Jack Kerouac” through the dbo:influenced property of the 

DBpedia property ontology. From this point of view, “John Lennon” and “Roy 

Harper” are understood to be analogous, in that, as noted, they belong to the 

same category and are connected to the same entity with respect to the 

dbo:influenced property. For this scenario, the search process must fill in the 

Analogy Query Template 1, AQT1, with information acquired from the user's 
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query. To do so, the search process executes a valid SPARQL query by replacing 

the [result-uri] field with the results of the UQ1 query: 

AQT1 Using influenced property to find analogous entities  
PREFIX dct:      <http://purl.org/dc/terms/>  
PREFIX dbo:      <http://dbpedia.org/ontology/>  
PREFIX sol:      <http://soltool.com/>  
 
CONSTRUCT {[result-uri] sol:analogousTo ?analogousEntity} WHERE { 

?auxInfluence dbo:influenced ?analogousEntity; 
            dbo:influenced [result-uri]. 
[result-uri] dct:subject ?auxCategory. 
?analogousEntity dct:subject ?auxCategory. 
FILTER (?analogousEntity != [result-uri] )  

} 
 

 

We also propose a different query context to take advantage of the 

DBpedia category hierarchy. For example, we might move up in the category 

hierarchy from English rock guitarists to English guitarists and then down to 

English bass guitarists, a narrower category. Thus, we would conclude that an 

entity of English rock guitarists is analogous to an entity of English bass guitarists 

with respect to the English guitarists category. Similarly to AQT1, the search 

process must fill in the Analogy Query Template 2, AQT2, with information 

acquired from the user's query in order to capture the analogy pattern. One 

characteristic of this template is that the subquery selects, among the categories 

of the UQ1 results, that with the lowest number of entities linked to it in order to 

find a more specific category subset. To achieve this goal, AQT2 uses the 

skos:broader property from SKOS ontology, a standard vocabulary for 

organization systems: 

AQT2 Using category hierarchy to find analogous entities  
PREFIX dct:      <http://purl.org/dc/terms/>  
PREFIX skos:     <http://www.w3.org/2004/02/skos/core#>  
PREFIX sol:      <http://soltool.com/>  
 
CONSTRUCT {[result-uri] sol:analogousTo ?analogousEntity} WHERE { 

?analogousEntity dct:subject ?category.   
?auxCategory skos:broader ?superCategory.    
?category skos:broader ?superCategory.  
{ 

SELECT ?auxCategory (count(?categoryClient)) 
WHERE { 

[result-uri] dct:subject ?auxCategory. 
?categoryClient dct:subject ?auxCategory.    

} 
GROUP BY ?auxCategory 
ORDER BY (count(?categoryClient)) 
LIMIT 1 

} 
FILTER (?analogousEntity != [result-uri] ) 

}   
LIMIT 2 
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A variation of AQT2 is the Analogy Query Template 3, AQT3, that randomly 

selects categories of the [result-uri] field: 

AQT3 Using category hierarchy to find analogous entities  
PREFIX dct:      <http://purl.org/dc/terms/>  
PREFIX skos:     <http://www.w3.org/2004/02/skos/core#>  
PREFIX sol:      <http://soltool.com/>  
 
CONSTRUCT {[result-uri] sol:analogousTo ?analogousEntity} WHERE { 

?analogousEntity dct:subject ?category.   
?auxCategory skos:broader ?superCategory.    
?category skos:broader ?superCategory.  
{ 
SELECT ?auxCategory  
WHERE { 

[result-uri] dct:subject ?auxCategory. 
} 
LIMIT 1 OFFSET RAND() 

} 
FILTER (?analogousEntity != [result-uri] ) 

}  
LIMIT 2 
 

Note that AQT1 relies on a vocabulary specific to the arts domain, the 

influenced property, while AQT2 and AQT3 use only Linked Data standard 

vocabularies and, therefore, they can be adopted for several domains. 

Finally, we observe that this approach uses the familiar notion of similarity 

functions, and thus, it may take advantage of tools, such as Limes (Ngomo & 

Auer 2011) and Silk (Isele et al. 2010) to offline precompute analogousTo triples, 

and add these triples to a dataset. 

 

4.3. Capturing the Surprising Observation Pattern 

To capture the surprising observation pattern, we suggest to reinterpret the 

rdfs:seeAlso property in such a way that a triple of the form (s,rdfs:seeAlso,o) 

would intuitively indicate that any user interested in entity s might also be 

interested in entity o. Indeed, the rdfs:seeAlso property is commonly used as 

a wildcard to relate contents with loose connections.  

In DBpedia, for example, there is a rdfs:seeAlso property linking 

“George Harrison” to “Apple Records”. This link may be motivated by an analysis 

of the connection between “George Harrison” and “The Beatles” and the 

connection between “The Beatles” and the “Apple Records”. For this scenario, 

the search process must fill in the Surprising Observation Query Template 1, 

SOQT1, with information from the UQ1 results:  
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SOQT1 Using seeAlso property to find surprising observation 
PREFIX rdfs:      <http://www.w3.org/2000/01/rdf-schema#>  
 
CONSTRUCT {[result-uri] rdfs:seeAlso ?surprise} WHERE { 

[result-uri] rdfs:seeAlso ?surprise. 
} 
 

Another surprising observation is the inclusion of other members of the 

same band of a given musical artist. This can be captured with the 

associatedBand property, as described in the Surprising Observation Query 

Template 2, SOQT2:  

SOQT2 Using associatedBand property to find surprising observation 
PREFIX rdfs:      <http://www.w3.org/2000/01/rdf-schema#>  
PREFIX dbo:      <http://dbpedia.org/ontology/>  
 
CONSTRUCT {[result-uri] rdfs:seeAlso ?surprise} WHERE { 

[result-uri] dbo:associatedBand ?band. 
?surprise dbo:associatedBand ?band. 

} 

 

Computing the rdfs:seeAlso property is a difficult issue though. A simple 

solution would be to define (s,rdfs:seeAlso,o) as (s,owl:sameAs,o), provided that 

entity s is defined in the dataset the query refers to and that o is an entity defined 

in another dataset listed in the query environment, but coming from a different 

domain. For example, consider the case of a dataset Dk about the music domain, 

which contains information, such as musical artists, their albums and their songs. 

Suppose that Q is a query submitted to Dk and Ti is a result of Q over Dk. If e is a 

singer that occurs in Ti, then the search process might look for a triple of the form 

(e,owl:sameAs,o) in Dk, where o is an entity defined in Dj, with j ¹ k, and include 

(e,owl:sameAs,o) in the serendipitous component corresponding to Ti. If Dj is a 

dataset about actors, the user may be told that singer e is also an actor, like 

“David Bowie” or “Jared Leto”.  

The example above illustrates how the surprising observation pattern can 

integrate different views about the same object. By gathering the combination of 

all social activities and different roles of a person, we are able to acquire a more 

complete version of his biography or his “social identity” (Goffman 1963). 

According to this strategy, using the query UQ1, the surprising observation 

pattern suggests the “David Bowie” entity of New York Times dataset3 for users 

who search for “David Bowie” in DBpedia, if the New York Times dataset belongs 

to the query environment. The Surprising Observation Query Template 3, 

SOQT3, depicts the template to capture this occurrence: 
                                                
3 http://data.nytimes.com/80300354872775959333 
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SOQT3 Using sameAs property to find surprising observation 
PREFIX rdfs:      <http://www.w3.org/2000/01/rdf-schema#>  
PREFIX owl:      <http://www.w3.org/2002/07/owl#>  
 
CONSTRUCT {[result-uri] rdfs:seeAlso ?surprise} WHERE { 

[result-uri] owl:sameAs ?surprise.  
} 
 

 

4.4. Capturing the Latent Goals Pattern 

In other circumstances, we can adopt a different strategy to capture surprising 

observations. Instead of providing surprising observations related to the goal of 

the current query, the application can explore how the current query results 

address other latent goals (De Bruijn & Spence 2008).  

Since every submitted query represents the user current goals, we use 

previously submitted queries to compose latent goals, i.e., goals that are not 

explicitly addressed in the current query. Therefore, new queries may be directed 

to explore whatever is eventually found related to other recent queries.  

By supporting latent goals, the procedure enables the discovery of 

problem-related information (Erdelez 1999) as the acquired data addresses a 

different goal than the expressed in the current query. In other words, the latent 

goals patterns objective is to discover how the current query results relate to 

previously submitted queries and use that to obtain further information. 

More precisely, let Q be a query submitted to a dataset Dk and P be a 

recent submitted query for Dk. A latent goal is supported if there is a triple (x,y,z) 

or triple (z,y,x), where x is a result of Q for Dk and z is a result of P for Dk.  

Consider the next example. Apparently, there is nothing in common 

between such disparate domains as "guitarists" and "salads". And yet a user 

visiting Quebec, who first asks about "Quebec" and "guitarists", and later, when 

planning for dinner, asks about "restaurants" and "salads", may be told – in 

unexpected detail – that one restaurant features "good salads, nice live guitarist". 

In this way, the serendipitous component can be made more responsive to the 

user’s interests and goals.  

For this scenario, the search process must fill in the Latent Goal Query 

Template 1, LGQT1, with information acquired from the user's query. To do so, 

the search process executes a valid SPARQL query by replacing the [result-uri] 

field with the results of the UQ1 query and [recent-query] with a recent query: 
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LGQT1 Using a recent query 
PREFIX sol:      <http://soltool.com/>  
 
CONSTRUCT {[result-uri] sol:latentGoal ?surprise} WHERE { 

{ 
[result-uri] ?p ?surprise. 
filter(?surprise IN ([recent-query])) 

} 
UNION 
{ 

?surprise ?p [result-uri].  
filter(?surprise IN ([recent-query])) 

} 
 

} 

 

 

Hence, the serendipitous component can be made more responsive to the 

user’s interests and goals, either merely involved in a multiple-query session as 

in the above example, or registered among the objectives of a daily agenda, or 

more elaborately deduced from some user profile representation. 

 

4.5.Capturing the Inversion Pattern 

The inversion pattern describes the process of discovery where the insight is the 

opposite of the initial intent. For this matter, the main objective is not to capture a 

RDF triple (s,p,o) that asserts that there is a property p connecting entity s to 

entity o, but rather the goal is to capture its opposite.  

Under the closed-world assumption, implemented as negation as failure, 

the absence of a RDF triple is understood that the assertion of that triple is false. 

But, negation as failure does correspond to the intuition behind the inversion 

pattern p. For example, p might be “cures”, whose inversion might be “causes” (a 

disease), which is different from “not cures”.  

Hence, to properly capture the inversion pattern, given a property p, we 

would have to postulate that there is a property q such that q captures the 

opposite of p. In other words, the underlying ontology would have to be rich 

enough to have properties and their antonyms, which is not always the case. 

There is a special case, though, worth exploring. Since we use the 

owl:sameAs property to define a strategy for capturing the surprising 

observation pattern, we propose to use the owl:differentFrom property in 

such a way that a triple of the form (s, owl:differentFrom,o) indicates that entities 

s and o are different, in spite of the initial intent (which is to find entities that 

represent the same real-world object). In this sense, the owl:sameAs and the 

owl:differentFrom properties are opposed to each other.  
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In DBpedia, for example, there is a owl:differentFrom property linking 

“Robbie Williams” to “Robin Williams”. For this scenario, the search process must 

fill in the Inversion Query Template 1, IQT1, with information from the UQ1 

results: 

IQT1 Using differentFrom property to explore inversion 
PREFIX rdfs:      <http://www.w3.org/2000/01/rdf-schema#>  
PREFIX owl:      <http://www.w3.org/2002/07/owl#>  
 
CONSTRUCT {[result-uri] owl:differentFrom ?inversionEntity } WHERE { 

[result-uri] owl:differentFrom ?inversionEntity .  
} 
 

 

 

 

4.6. Capturing the Wrong Hypothesis Pattern 

We adopt a completely different strategy to capture the wrong hypothesis pattern. 

Very briefly, the suggested strategy allows the user to stop consuming the result 

list obtained for a query Q, and restart the search process with a new query Q’ 

based on some entity observed in the serendipitous component of a result of Q. 

That is, the user would retarget his search based on some entity the search 

process may have passed in a serendipitous component. This pattern may be 

quite useful when the user does not find enough information with his query but 

does not know what else to search for. 

The wrong hypothesis pattern relies on the category representation of 

DBpedia to present alternative queries to the user. To do so, the search process 

executes the user query and retrieves the three most popular categories of the 

results i.e. the categories that appear most often in the results. With this 

information, the search process builds an alternative query allowing the user to 

restart the search process with a different perspective.  

To reproduce this behavior, the search process must proceed in two steps. 

First, it uses the Category Frequency Query Template 1, CFQT1, to get the three 

categories with the largest number of entities linked to them. The search process 

fills the template with two pieces of information from the user’s query string: the 

output variable of the query string represented by the [var] field and the query 

string itself represented by the [user-query] field: 
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CFQT1 Extracting the most used categories from the subquery 
PREFIX dct:      <http://purl.org/dc/terms/>  
 
SELECT  (COUNT(?s) AS ?counter) ?category WHERE { 

?s  dct:subject ?category.  
FILTER ( ?s = [var])  
{ 

[user-query] 
} 

} 
GROUP BY ?category 
ORDER BY DESC(?counter) 
LIMIT   3 OFFSET  1   
 

Second, the search process fills in the Wrong Hypothesis Query Template 

1, WHQT1, with information acquired from the CFQT1 by replacing the 

[categories-list] term with results of the previous query. 

WHQT1 Building alternative query 
PREFIX dct:      <http://purl.org/dc/terms/>  
 
SELECT ?entity WHERE { 

{  
SELECT ?entity WHERE { 

?entity dct:subject ?catAux.   
FILTER (?catAux IN ([categories-list]) ) 

} 
   } 
   MINUS 
   { 

[user-query] 
   } 

 
}  
LIMIT 100 
 

For example, assume the search process receives UQ1. First, the search 

process uses CFQT1, to discover that the three most frequent categories of UQ1 

are: English rock guitarists, Living people and English male singers. Then, it 

completes the WHQT1 template with the acquired information as depicted in the 

example below. 
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Example of alternative query to UQ1 
PREFIX dct:      <http://purl.org/dc/terms/>  
PREFIX dbc:      <http://dbpedia.org/resource/Category:>  
 
SELECT ?entity ?catAux WHERE { 

{  
SELECT ?entity WHERE { 

?entity dct:subject ?catAux.   
FILTER (?catAux IN (dbc:English_rock_guitarists, 

dbc:Living_people, dbc:English_male_singers) ) 
} 

   } 
   MINUS 
   { 

SELECT distinct ?entity WHERE{ 

?entity dct:subject dbc:English_rock_guitarists.  

} 
   } 
} 

 

 

4.7. Capturing the Disturbance Pattern 

We also suggest to adopt a strategy based on the result list to capture the 

disturbance pattern. This strategy perturbs the order of the result list obtained for 

a query Q by randomly bringing results further down the result list to near the top 

of the list. The user who issued query Q would therefore be exposed to results 

that he would normally neglect, and consequently his perception of the query 

result list would be changed.  

This strategy stems from two motivations. First, if query Q returns a result 

list ordered by any ranking criterion X, then the disturbance pattern has the ability 

to smooth the impact of X. Second, if no ordering criterion is provided, the 

dataset endpoint may use its own ordering, in other words, the query will highlight 

results using a criterion that is not clear to the application or the user. 

For example, consider that a user modifies the UQ1 so that the results are 

ordered alphabetically. The disturbance pattern switches the position of “Adrian 

Portas” and “Würzel”, both English rock guitarists. 

 

4.8. Chapter Summary 

In this chapter, we formalize strategies to capture serendipity patterns in the 

context of Linked Data search for the music domain. For this domain, serendipity 

search can increase the user satisfaction by providing interesting and non-

obvious artists or songs. 

We present five serendipity patterns according to the query orchestration 

process. To capture the analogy, the surprising observation, the latent goals and 
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the inversion patterns, we resort to Serendipitous response for a query strategy. 

To capture the wrong hypothesis pattern, we apply the serendipitous alternatives 

for a query strategy. Finally, to capture the disturbance pattern, we apply the 

Serendipitous rebalancing of a query results strategy. 
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5                                                                                            
SOL-Tool 

5.1.Introduction 

In order to validate the query orchestration process and to apply the 

serendipitous patterns, we developed a Linked Data search tool, the Serendipity 

Over Linked Data Search Tool – SOL-Tool. The SOL-Tool was developed in Java 

with the Jena framework4, a well-stabilized framework for Linked Data query 

processing and data manipulation, and Java Concurrent API5 to parallelize the 

task of invoking remote datasets. 

The SOL-Tool modular architecture is organized in a way that allows the 

search process to: (1) isolate the logic task of displaying the results from the rest 

of the search process; (2) permit not only users but also other applications to 

consume the search process of the tool; (3) take actions before, during and after 

the execution of the user’s query; (4) attach additional information to every item 

of a query result; (5) address remote datasets independently; (6) enable the 

different query strategies for different scenarios; and (7) parallelize the query 

execution.  

Figure 6 depicts the SOL-Tool architecture. 

 

Figure 6: The SOL-Tool Architecture 

                                                
4 https://jena.apache.org/ 
5 http://docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-

summary.html 
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To handle (1) and (2), the SOL-Tool Interface merely acts as the interface 

of the search engine with the user or other application receiving a SPARQL query 

and returning its results. This enables future versions of the SOL-Tool search 

engine to be instantiated as a Web service for other applications. Then, the SOL-

Tool Interface starts the Dataset Orchestrators with a catalogue of datasets. 

Motivated by (3), (4) and (5), the Dataset Orchestrator is responsible for 

interacting with a single dataset and managing the acquired data. This way, the 

application can address multiple dataset endpoints by merely creating multiple 

instances of Dataset Orchestrators. Each Dataset Orchestrator works 

independently with its isolated view of Query Executors, Query Builders and 

Result Balancers. 

The Dataset Orchestrator first uses the Basic Query Executor to process 

the user's query and retrieves its results. The Basic Query Executor is just a 

basic type of Query Executor that receives a SPARQL query, processes it and 

returns its results.  

For every result of the user's query, the Dataset Orchestrator invokes 

Query Executors to process secondary queries and locate content that is 

serendipitously related to the respective result. The Dataset Orchestrator then 

delegates the task of querying its dataset to the Query Executor.  

Motivated by (5) and (6), the Query Executor defines how to query the 

dataset. It encapsulates the logic of the query executed, in other words, it 

describes the serendipity patterns in terms of a SPARQL query that can be 

submitted to the dataset. To adapt the search process to different scenarios and 

behaviors, the SOL-Tool provides different Query Executors as described in 

Chapter 4, and also provides an interface to build new ones. Secondary tasks of 

the Query Executor include parsing the results and handling eventual network 

exceptions.  

It is worth noting that the Dataset Orchestrator encompasses the strategy 

of the search process while the Query Executor retains its logic. Thus, a Dataset 

Orchestrator acts as a façade for encapsulating several Query Executors to 

address the same dataset with different approaches. This design allows the 

application to adopt different approaches and control the level of effort to produce 

serendipity in the results.  

Then, the Dataset Orchestrator invokes Query Builders to create alternative 

query suggestions to the user’s query. The Query Builders receive a query string 

and return a different query string in order to enable a wrong hypothesis pattern 

experience. They encapsulate the logic of the query transformation and can be 
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invoked before, during or after the Basic Query Executor is executed. Like the 

Query Executors, the Query Builders have access to remote datasets, thus also 

handling (5).The current version of SOL-Tool presents only one Query Builder as 

described in Chapter 4.  

Finally, the Dataset Orchestrator may also invoke a Result Balancer to 

reorder the obtained results. The Result Balancer encapsulates the logic to 

reorder the results. The current version of SOL-Tool only provides an interface for 

the construction of new Result Balancers. 

 

5.2. Concurrent Dataset Request 

As most of the effort spent by the application relies on invoking remote dataset 

endpoints, a critical factor since early implementations is the impact of latency in 

overall performance, i.e., the time that the application waits for remote servers to 

respond. To address this problem, the application resorts to the Java concurrent 

API to invoke SPARQL requests concurrently. 

To reproduce this behavior, every Query Executor must implement a call 

method that is responsible for executing the SPARQL request and returning the 

query results. Therefore, the Dataset Orchestrator invokes the Query Executors 

asynchronously and aggregates the results that come from the remote dataset 

endpoint. The Dataset Orchestrator incorporates a MapReduce strategy 

(Leskovec et al. 2014) to combine the results related to an entity from many 

Query Executors as depicted in Figure 7. For example, assume that the user 

query returns an entity e. The Dataset Orchestrator will invoke Query Executors 

to find content that is serendipitously related to e. All data content found are 

grouped together using the URI from e. 
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Figure 7: MapReduce Strategy 

With this configuration, the SOL-Tool application executes a basic search 

in less than 6% of the time of the single thread version. For comparison, UQ1 

was executed 10 times using the single thread and the multi-thread version of 

SOL-Tool. The average time of the single thread is 144 seconds, while the 

average time of the multi-thread (with a pool of 50 threads) is 7.4 seconds. 

5.3. Evaluation  

From the recommender systems literature, a common approach to evaluate 

quality is to measure the accuracy of the results. However, as argued in 

(Murakami et al. 2007), other metrics should be considered since very accurate 

results may lead the user to a bubble where he is only exposed to restricted and 

obvious information. To overcome this problem, we adopt unexpectedness to 

measure the serendipity of the results.  

In (Murakami et al. 2007) the unexpectedness of the results is evaluated 

by comparing the acquired results to a more primitive baseline system. However, 

as Kaminskas and Bridge (2014) point out, this approach has several drawbacks: 

for example, the evaluation is sensitive to the baseline system. They then 

propose a different approach for measuring unexpectedness based on the 

dissimilarity of content labels. It uses the complement of the Jaccard similarity to 

compute the distance between two items. Therefore, the unexpectedness of an 

item is computed as the minimum distance of this item to previously seen items.  

The experiment in this section uses the content-based metric (Kaminskas 

and Bridge 2014) to evaluate the level of unexpectedness of the serendipitous 

component of the SOL-Tool, compared to its regular component. The content-

based metric (Kaminskas and Bridge 2014) is depicted as follows: 

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA



49 
 

 

𝑑𝑖𝑠𝑡(𝑖, 𝑗) = 1 −
𝐿. ∩ 𝐿0
𝐿. ∪ 𝐿0

 

where Li and Lj are set of labels describing items i and j. 

In order to select the item labels properly, the experiment adopts the Type 

Query Template, TQT1, that extracts the types associated with a given [entity] 

entity. 

TQT1 Extracting the type of an entity 
PREFIX rdf:      <http://www.w3.org/1999/02/22-rdf-syntax-ns>  
 
SELECT distinct ?type WHERE{ 

[entity] rdf:type ?type.  
} 

 
 

We chose to evaluate the level of unexpectedness according to the 

Kaminskas and Bridge (2014) metric because it indicates how the two elements 

differ in context of the provided labels. If a user is introduced to elements with a 

high level of unexpectedness he is likely to explore new frontiers of the dataset 

with information that he would not be exposed in his original query. 

This way, a suggestion with 0 score of unexpectedness represents an item 

with the same set of labels of the base item and, subsequently, closer to the base 

item definition. On the other hand, a suggestion with score of unexpectedness 

equal to 1 represents an item without any label in common with the base item.  

Due to the size of DBpedia, we adopted the same strategy as (Passant 

2010a) and limited the scope of the evaluation by restricting the user’s query to 

retrieve entities of the type MusicalArtist and Band from DBpedia ontology, which 

have at the time of this writing 50,978 and 33,613 entities, respectively. The User 

Query 2, UQ2, selects entities of the type MusicalArtist.  

UQ2 Entities from MusicalArtist type 
PREFIX rdf:      <http://www.w3.org/1999/02/22-rdf-syntax-ns>  
PREFIX dbo:      <http://dbpedia.org/ontology/>  
 
SELECT distinct ?subject WHERE{ 

?subject rdf:type dbo:MusicalArtist.  
} 

 
 

The User Query 3, UQ3, selects entities of the type Band and is defined 

similarly to UQ2. 
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UQ3 Entities from Band type 
PREFIX rdf:      <http://www.w3.org/1999/02/22-rdf-syntax-ns>  
PREFIX dbo:      <http://dbpedia.org/ontology/>  
 
SELECT distinct ?subject WHERE{ 

?subject rdf:type dbo:Band.  
} 

 

 

Given the automated nature of the experiment, the Latent Goals 

QueryExecutor is not included in the serendipitous search of the above queries. 

The motivation is that the latent goals pattern relies on information provided by 

user profiles. Our major concern is that any profile specification could bias the 

experimental results. 

Table 4 depicts the average unexpectedness of the serendipity component 

of UQ2 and UQ3 with SOL-Tool and SOL-Tool-1, a variation of SOL-Tool that 

limits the number of results to one entity per Query Executor. This customization 

is possible due to the parameterization of the limit value of the Query Executor 

templates. 

Table 4: Experimental results. 

Query Unexpectedness 
average 

Query Unexpectedness 
average 

UQ2 0.90 UQ2 with limited Query Executors 0.80 

UQ3 0.88 UQ3 with limited Query Executors 0.81 

 

The overall result of Table 4 indicates that the SOL-Tool performs well 

when proving unexpected results for the selected inputs. This outcome illustrates 

the fact that the application adopts different strategies to present serendipitous 

content. 

A concern of the metric (Kaminskas and Bridge 2014) is the influence of 

very dissimilar items on unexpectedness computation. This issue is partially 

addressed by the SOL-Tool application because each serendipity pattern 

explores how entities are related. For example, consider the entity that 

represents the “Juli” band retrieved by executing UQ3. The execution of TQT1 

extracts 32 type labels of the “Juli” entity and 320 type labels of the entities 

encountered with the serendipitous search of UQ3, but from those 320 labels, 

there are 27 type labels that also belong to “Juli”. The unexpected score of this 

item is 0.93, in spite of finding 85% of “Juli” type labels. 
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An additional interesting information of Table 4 is the loss of 

unexpectedness when limiting the number of results per Query Executor. The 

configuration of these parameters may be used to leverage the tradeoff between 

the quality of results and the effort spent in the search. This matter can be 

addressed with a simulated annealing strategy and represents an interesting 

topic for future study. 

 

5.4. Lessons Learned 

The overall score of 90% of unexpectedness acquired in the experiments 

indicates that SOL-Tool approaches well the problem of locating serendipitous 

content for the music domain. Nevertheless, other factors ought to be considered 

in future experiments. 

Particularly, a different perspective to be investigate in SOL-Tool is the 

impact of the Latent Goals QueryExecutor in the application overall performance 

since the component has not been considered in the reported experiment. We 

are optimistic that in an experiment that tracks user’s recent query history the 

Latent Goals Query Executor may enable the discovery of more serendipitous 

connections. 

Additionally, minor improvements can be conducted in the architecture. 

The SOL-Tool architecture was designed to support extensibility by simply 

creating new instances of Query Executors, Query Builders and Result 

Balancers. However, it is worth noticing that the performance may be affected as 

the number of Query Executors grows significantly. The explanation for this effect 

is that the number of Query Executors determines how many secondary queries 

are to be invocated. Although the Map Reduce strategy mitigates the latency 

issue, the number of dataset requests increases with the number of Query 

Executors included in the search process. 

 Considering this scenario, there are two opportunities for enhancement in 

SOL-Tool architecture. A first alternative is to adapt the SOL-Tool application to 

an IaaS cloud environment (Mell et al. 2011), such as Azure6 or Amazon Elastic 

cloud7. In such environments, the data processing tasks can be distributed on a 

wider scale. 

 A second alternative is to develop a new component module to analyze 

the dataset a priori and reason whether each Query Executor should be invoked 

                                                
6 https://azure.microsoft.com/ 
7 https://aws.amazon.com/pt/ec2/ 
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or not. With that, the work load would be optimized because the processing of a 

query would not invoke Query Executors that would not be useful for the 

respective dataset. Examples of such occurrences are Query Executors that deal 

with entities or vocabularies not presented in the dataset. 

 

5.5. Chapter Summary  

The SOL-Tool was developed with the objective of validating the query 

orchestration process by combining different strategies to locate Linked Data 

content. The processing unites unexpectedness and relatedness and the 

experimental results present a promising score of 90% of unexpectedness for 

real-world scenarios in the music domain.  

The SOL-Tool architecture encompasses five component types: (1) Query 

Executors that are responsible for processing secondary queries and discovering 

additional information about a given entity; (2) Query Builders that create 

alternative query suggestions to the user; (3) Result Balancer that is responsible 

for reordering the obtained results; (4) Dataset Orchestrator that coordinates how 

the first three components interact with a given dataset; (5) SOL-Tool Interface 

that acts as the interface of the search engine with the user by receiving a 

SPARQL query and returning its results. 
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6                                                                                                  
A Serendipity Movie Test Dataset 

6.1.Introduction 

The overall approach adopted by search applications is to locate resources that 

are strongly related to the user’s needs. In other words, the main concern is to 

maximize how accurate the results are for a given input. However, studies 

(Murakami et al. 2007, Ge et al. 2010) argue that accuracy alone can lead the 

user into an information bubble where the user is only exposed to information of a 

certain niche or, even worse, to a kind of information he already knows. These 

studies suggest that other metrics, such as serendipity, ought to be considered in 

order to analyze the user satisfaction. 

Serendipity has been used in recommender systems (Abbassi et al. 2009, 

Adamopoulos et al. 2011, Stankovic et al. 2011, Zhang et al. 2012, Bordino et al. 

2013) to provide unexpected items among the search results. As argued in 

(Toms 2009), serendipity provides a holistic and ecological approach to 

information acquisition in information systems.  

The serendipity relatedness problem consists of finding entities that are 

serendipitously, i.e., unexpectedly, related to a source entity. Inspired by studies 

that embody serendipity among the recommendation process (Ziegler et al. 2005, 

Abbassi et al. 2009, Zhang et al. 2012), we propose the adoption of a global 

classifier function that divides the universe of items in partitions according to the 

genre feature. Thereafter, a pair of items is understood to be serendipitously 

related if they belong to different partitions and yet share a reasonable amount of 

connections or common features, according to similarity criteria.  

In spite of the studies that address the serendipity relatedness problem, at 

the time of this writing there are no benchmarks to measure and compare the 

effectiveness of different approaches. As Iaquinta et al. (2008) argue, to 

conceptualize, analyze and implement serendipity turns out to be a difficult task 

due to its subjective nature.  

Therefore, the main contribution of this chapter is a dataset created to 

support the evaluation of approaches that address the serendipity relatedness 

problem in the movies domain, which we refer to as the Serendipity Movie Test 
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Dataset (Eichler et al. 2018). Nevertheless, the Serendipity Movie Test Dataset 

can also be used in parallel with user feedback experiments in order to provide a 

complementary view of analyzed approach. 

As described in this chapter, the Serendipity Movie Test Dataset contains 

entities and connection paths extracted from the LOD cloud that pertain to the 

movies domain.  

A second contribution of this chapter is the discussion and description of 

the steps and design decisions involved in the construction of the Serendipity 

Movie Test Dataset. The first step consisted in the selection of a set of entity 

pairs from the movies domain. The second step referred to the extraction of a set 

of connection paths, for each entity pair. The final step was to rank the pairs, 

based on information extracted from DBpedia and LinkedMDB8, and to select the 

top-k ones.  

The proposed dataset creation process defines the necessary steps for 

building a dataset that exploits Linked Data resources. The steps are structured 

and can be extended to capture different particularities of the retrieved data, the 

given domain or the benchmark goal. For example, the data is structured so that 

the same Linked Data resources can be used to build different benchmarks by 

simply adopting distinct pair ranking algorithms.  

It is worth noticing that, although the Serendipity Movie Test Dataset 

addresses the serendipity relatedness problem in the movies domain, the overall 

strategy described in this paper can be replicated in different domains or even 

combine different domains in the creation process. For instance, to create a 

serendipity music dataset, one may implement the same steps as Serendipity 

Movie Test Dataset and simply adapt a few steps, such as the Linked Data 

dataset source selection. 

 

6.2. A Generic Path Finding and Ranking Process 

In order to address the path finding problem, we propose the definition of ignored 

list, connections and connection paths. 

An ignored list is a list of properties that should not be considered in the 

path finding algorithm. The motivation of this requirement is because there may 

be a set of properties that, if considered in the path finding algorithm, will produce 

noise in the paths found.  

                                                
8 http://www.linkedmdb.org/ 
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Let G be an RDF graph and Z be an ignored list. A connection in G 

between entities e1 and e2 is a triple (e1,p,e2) or a triple (e2,p,e1) in G, where p ∉ 

Z. The notion of connection is important because the RDF data model induces a 

directed graph, while for this problem it is only necessary to know if two entities 

are connected, regardless of the role they play in the triple. 

A connection path CP(e1,en) in G between entities e1 and en is a sequence 

of entities (e1,e2,e3, …, en-2,en-1,en), where n is the path length, ei is unique, for i Î 

[1,n] and there is a connection between entities ei and ei+1 in G.   

There are two key points in the construction of the dataset. First, we apply 

a path finding algorithm to discover the connection paths between two resources. 

Second, we apply a pair ranking algorithm in order to rank entity pairs according 

to the connection paths they share. 

The path finding algorithm receives an RDF graph G, two entities, esource 

and etarget and a maximum distance k. It implements a breadth first search (BFS) 

to discover a set of connection paths CP(esource , etarget) in G. The algorithm starts 

a BFS with entity esource. Subpaths are generated by expanding the search to 

entities that share a connection with esource; this process goes on recursively until 

k is surpassed or a connection path is found. Finally, a connection path is found if 

the entity etarget is reached. The output of the algorithm is a set of connection 

paths CP(esource , etarget) starting from  esource and ending in etarget. 

The pair ranking algorithm receives a list of entity pairs (esource,ei), where I Î 

[1,n], and i ≠ source. For each i, it analyses the connection paths that the entity 

pair esource and ei have and computes a scorei according to the Katz index (Katz 

1953). The output of the algorithm is a ranked list of entity pairs, according to the 

computed score.  

 

6.3. Constructing the Serendipity Movie Test DataSet 

6.3.1. Overview of the Construction Process 

The construction of a Serendipity Test Dataset in general involves seven major 

steps: (1) how to select relevant entity pairs for a given domain; (2) which Linked 

Data datasets present relevant data to support the domain; (3) how to map those 

entities to Linked Data resources; (4) how to retrieve data about an entity; (5) 

how to discover connection paths for the entity pairs selected; (6) how to rank the 

entity pairs; and (7) how to present the relevant acquired pairs.  
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The overall strategy adopted for the creation of such datasets is 

summarized in what follows and detailed in the next sections for the movies 

domain.  

The class Entity encompasses the basic information needed to describe the 

entities that the dataset is about. In the case of the movies domain, each entity 

represents a movie with its title, year and genre.  

The entity data is processed in order to locate Linked Data resources that 

represent that entity in a Linked Data dataset; this task addresses step (3). If 

Linked Data resources are found and a LD Resource instance is created, a 

routine queries Linked Data datasets in order to retrieve a Linked Data graph 

containing information about this resource, achieving step (4).  

The class Pair associates two instances of LD Resource, one representing 

a source entity and the second representing a possible candidate for serendipity 

suggestion. The class Pair holds only the connection paths that connect the two 

resources, therefore addressing step (5). Then, each pair receives a score based 

on its connection paths, as in step (6). Finally, the top-k entities with higher 

scores are stored as the recommendation for the source entity, addressing step 

(7).  

Figure 8 depicts the data model that describes the movie domain in the 

Serendipity Movie Test Dataset. 

 

Figure 8: Data Model of the dataset Construction Process 

 

6.3.2. Selecting Entity Pairs 

We focused on popular movies in the movies domain. Since popularity 

represents a relevance criterion, we decided to adopt Google Search expertise 

for this matter. Additionally, it is important that the dataset construction retrieves a 
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list of movies divided by genre, as the dataset partition plays a decisive role in 

our definition of serendipity relatedness. 

First, we submitted the query “most popular movie genres” to Google 

Search. The result of the query is a list of 51 movie genres ordered by popularity. 

Then, for the 15 first movie genres, we submitted the query “genre + 

movies”, such as “comedy movies”. Among the results of this query is the data 

(title and release year) of the 51 most relevant movies for that genre, according to 

Google Search. Figure 9 depicts an example of movie genre search. We only 

considered the 15 first movie genres because many genres from the bottom of 

the list represent sub-genres of the previous ones. For example, “Spaghetti 

western” is a sub-genre of the “Western” genre. 

 

Figure 9: Google Search example 

Regarding the adoption of subgenres, we decided not to consider 

subgenres because we believe that they could introduce bias to the final results. 

For example, it is likely that a subgenre movie presents a good score when linked 

to a master genre movie. One way to prevent such occurrences is to annotate the 

relation between genres, but we avoided this decision in order to not interfere 

with the initial input. 

With this data, we built a list of relevant movies grouped by genre and 

concluded the first step of the construction of the dataset. The product of this step 

is available in the BaseList folder of the dataset (Eichler et al. 2018). 

 

 

6.3.3. Linked Data URI Mapping 

Now that we have data that permits us to identify a movie, title and release year, 

a second challenge is how to map those objects to linked data resources, in other 

words, to discover a URI that represents the movie in a linked data dataset. Since 
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we are addressing the movies domain, we decided to use DBpedia and 

LinkedMDB as data sources for searching movies entities.  

DBpedia was chosen because it is one of the largest linked data datasets 

and it is also one of the most used in linked data experiments (Volz et al. 2009, 

Passant 2010a, Passant 2010b, Stankovic et al. 2011, Marie et al. 2013, Piccioli 

et al. 2014), at the time of this writing. LinkedMDB was chosen because it 

presents specific knowledge about the movies domain and it is also well explored 

in academic experiments (Volz et al. 2009).  

Since DBpedia and LinkedMDB present different particularities, we resort to 

different strategies for URI searching with each dataset. 

As DBpedia works with human readable URIs, an analysis was made and it 

was identified that for a movie with the title MOVIETITLE and release year 

MOVIEYEAR, the most used patterns for a movie URI are: 

• http://dbpedia.org/resource/MOVIETITLE_(MOVIEYEAR_film) 

• http://dbpedia.org/resource/MOVIETITLE_(film) 

• http://dbpedia.org/resource/MOVIETITLE 

Then, the procedure to locate a movie entity URI in DBpedia is to try the 

above URI patterns from the most restrictive to the least restrictive and check if it 

presents a threshold number of triples in the DBpedia dataset. 

Additionally, if a movie entity URI is found, a second check must be 

performed. If the above-mentioned procedure finds a URI movieURI that appears 

in a triple (movieURI,dbo:wikiPageRedirects,anotherURI), then anotherURI will 

be considered as the valid URI for that movie. The reason for this analysis 

decision is that the wikiPageRedirects property from DBpedia ontology 

namespace is used for disambiguation and describes cases in which the object of 

the triple represents a more complete version of the subject of the triple.  

This strategy enabled the procedure to locate 749 movie URIs in DBpedia 

from the initial set of 765 movies of our movie list. 

The same URI patterns are not applicable to the LinkedMDB dataset, since 

it does not deal with human readable URIs. Therefore, we resort to a different 

strategy for the LinkedMDB dataset. To discover the LinkedMDB URI for a movie 

with title MOVIETITLE and release year MOVIEYEAR, the procedure queries the 

LinkedMDB endpoint through the SPARQL query:  
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LinkedMDB URI Finder 
PREFIX rdfs:      <http://www.w3.org/2000/01/rdf-schema#>  
PREFIX dct:      <http://purl.org/dc/terms/>  
 
SELECT ?movieURI where { 

?movieURI rdfs:label MOVIETITLE . 
?movieURI dct:date ?date .  
FILTER regex(?date, "^MOVIEYEAR") .  

} 

 

 

The above query uses the label property from RDF-Schema (Brickley et al. 

2014) namespace to select entities that match the movie title, while the date 

property from Dublin Core (Weibel et al. 1998) namespace is used with filter 

operator to gather entities with the given release year. Naturally, if the release 

year of the movie is unknown, the third and fourth lines are removed from the 

query. 

With this strategy, the procedure was able to locate 510 movie URIs in 

LinkedMDB from the initial set of 765 movies of our movie list. 

It is noteworthy that the second strategy represents a more general 

strategy for URI finding since it takes advantage of not only RDF structure but 

also Linked Data popular vocabularies. In fact, the second strategy could have 

been used for DBpedia that also represents movie titles with the label property 

but does not present date information in triples. 

With the acquired data, we augment our movie list with DBpedia and 

LinkedMDB URIs for each movie and conclude the second step of the 

construction of the dataset (Eichler et al. 2018). Movies whose URIs could not be 

found are discarded for the following steps. The product of this step is available in 

the URIMapping folder of the dataset. 

 

6.3.4. Retrieving Entity Data 

There are basically two options for publishing data on the Web: through a dump 

file that is a serialized version of the dataset or through a SPARQL endpoint that 

is a service that returns data on-the-fly. We chose to retrieve data through the 

second option as it provides an updated version of the selected data. 

Nevertheless, it is worth noticing that depending on the situation a dump file may 

be used in this step as well. Server latency, data quality and availability are some 

of the factors that can affect this decision. 

In order to retrieve data about movies, the dataset construction process 

accesses the LinkedMDB SPARQL endpoint performing a crawling approach. 
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This approach executes a BFS against the LinkedMDB endpoint in a manner 

similar to that described in the Path Finding algorithm. To reproduce this behavior 

with a SPARQL endpoint, the expansion step is translated into the SPARQL 

queries below, which capture the entities that are connected to a given 

[baseEntity]. Therefore, the procedure collects all triples that describe entities that 

are closer to a base entity. For the goal of this step, only entities that present a 

maximum distance of two to the source entity are considered.  

BFS Expansion step 
CONSTRUCT {[baseEntity] ?p ?connectedEntity } where { 

[baseEntity] ?p ?connectedEntity . 

} 

CONSTRUCT { ?connectedEntity ?p [baseEntity] } where { 

?connectedEntity ?p [baseEntity] . 

} 

 

 

This way, the dataset construction retrieves a data graph containing the set 

of triples that best describes each entity of our movie list and is located in the 

DataGraph folder of the dataset (Eichler et al. 2018). 

 

6.3.5. Discovering Connection Paths 

In order to extract the connection paths between two entities, the procedure joins 

the data graph of the two entities and executes the Path Finding algorithm with 

the aggregated data graph.  

There are three design assumptions that drive the path discovery process. 

First, the procedure does not consider triples whose object is a literal due to the 

obvious fact that it cannot lead the path towards the target entity. Second, the 

procedure does not consider triples of the form (s,rdf:type,o) that, through the 

type property from the RDF namespace, specifies that entity s is an entity of 

class o. The motivation is that, in a specific domain, such as movies or music, a 

relevant fraction of the population is attached to a single class, like the Movie 

class. Therefore, a Movie class would establish a connection path between any 

pair of movies and could influence results of the Path Finding algorithm. Third, 

the algorithm assumes that the maximum length that a connection path should 

have is 3, because, as we loosen this boundary, the number of connection paths 

with length 4 start to dominate the total of connection paths found. 
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Other less important assumptions were also made for the movies domain. 

The Path Finding algorithm ignores triples that use the country, language and 

genre properties from the LinkedMDB namespace. The first two properties are 

not considered because, similarly to the rdfs:type property,  they do not present a 

reasonable diversity of values since, in the dataset, only two different countries 

were assigned to the movies and many movies are not assigned to any country. 

In other words, the two properties do not add relevance to the dataset. On the 

other hand, the genre property is ignored because it induces the exact effect that 

the Serendipity Movie Test Dataset aims to avoid i.e. to connect entities of the 

same genre. 

Note that the fundamental point of our approach for the serendipity 

relatedness problem is to select pairs of entities from different genres. Therefore, 

this step compares a movie with every other movie that belongs to a different 

cinematographic genre. Hence, each movie from a genre different from that of 

the source movie is a possible candidate for a serendipitous suggestion. 

Thus, each movie will have an associated list of possible candidates for 

serendipity i.e. the list of movies from different genres. The algorithm takes a 

movie M and creates pairs (M,M’) such that M’ is a movie that is a candidate to 

be considered as serendipitously related to M. Thus, each pair is in turn 

associated with the connection paths extracted in this step. Pairs of movies 

whose connection paths could not be found are discarded for the following steps. 

The product of this step is available in the Pair folder of the dataset kept at 

FigShare (Eichler et al. 2018). 

One may notice that the data retrieval and the path discovery steps could 

be combined in a single step. There are two justifications for keeping them 

separate. The first motivation is a matter of performance. If entity data is going to 

be used in the analysis of several entity pairs, it is convenient to store this data 

and reuse it as needed. The second motivation is because the Serendipity Movie 

Test Dataset is designed to support extensibility. By decoupling data retrieval 

from path discovery, the dataset can be used in the future for the creation of 

other benchmarks. For instance, one may take advantage of the first three steps 

and build a new benchmark simply by analyzing the retrieved data from a 

different perspective, such as similarity. 
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6.3.6. Ranking Entity Pairs 

For each entity, we ranked the entity pairs that involve the entity and a set of 

candidate entities using the connection paths between the entities in the pair. The 

entity pairs ranking process is conducted as described in the Pair Ranking 

algorithm. The procedure first computes the score of each connection path. Then, 

it sums the scores of all connection paths of a pair. Finally, the procedure orders 

the entity pair list according to the computed scores. This way, pairs at the top of 

the list represent entities that are more serendipitously related. 

The score is computed according to the semantic connectivity score (SCS) 

(NUNES et al., 2014), a variation of the Katz index (Katz 1953). SCS is defined 

as: 

𝑆𝐶𝑆(𝑠, 𝑡) =5 𝛽7 ∗ 9𝐿〈7〉9
<

7=>
 

where |L<l>| is the number of connection paths from s to t of length l and k is the 

maximum distance considered between s and t. The damping factor β is 

responsible for exponentially penalizing longer paths. In order to privilege the 

shorter connection paths, we choose a distribution of weights of β as depicted in 

Table 5. 

Table 5: Weight distribution 

Connection Paths Length Weight 

1 8 

2 4 

3 2 

 

The Pair Ranking algorithm also takes into account the number of 

connection paths that the pair has. It sums the computed scores of all connection 

paths of the pair. 

For the movies domain, an additional assumption was made. Since a movie 

may belong to more than one genre, e.g., “Alien” is classified as an action movie 

and as a science fiction movie, the procedure had to consider candidate movies 

only from genres that do not coincide with any of the genres to which the base 

movie belongs. Hence, movies that belong to action or science fiction genre are 

not possible candidates for the Alien movie.  

The product of this step is located in the Pair folder of the dataset (Eichler 

et al. 2018).  
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6.3.7. Output 

Now that each movie holds a ranked list of possible candidates for serendipitous 

suggestions, a final task is to present this information as the final output of the 

dataset. Since the candidates list is ordered by score, the procedure just needs to 

select the top-k pairs to filter out the least relevant elements. For the movies 

domain, it only presents the top 3 elements. 

The movie data that is present in the list include: movie title, DBpedia URI, 

LinkedMDB URI and, naturally, the computed score. The first three data 

attributes, which are needed for movie identification, are all included in the final 

response of the Serendipity Movie Test Dataset because the client application 

that will use it might adopt plain text to represent the movie entity or might also be 

a Linked Data application that understands Linked Data URIs. Hence, a client 

application is able to submit a movie URI and retrieve a list of URIs that are 

serendipitously related to it. The fourth attribute, the computed score, is just an 

evidence for the importance of the candidate movie. 

 

6.4. Case Study Example 

This section presents a case study example in order to illustrate how we structure 

the data in each step of the construction of the Serendipity Movie Test Dataset. 

The motivation of this section is twofold: (1) to exemplify how to use the data 

provided in order to help using it; and (2) to provide a different perspective of the 

dataset creation process. 

As dataset partition plays a decisive role in the dataset creation process, 

our initial movie list is divided by genre. The BaseList folder contains a set of 

movie lists of different genres in JSON format. A movie list presents the same 

information as depicted in Figure 9 of section 6.3.2. Table 6 shows a movie list 

example. 

Table 6: Romantic Comedy movies 

Title Year 

Pretty Woman 1990 

When Harry Met Sally... 1989 

Notting Hill 1999 

Serendipity 2001 
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Curiously, Serendipity is indeed the name of a movie, an American 

romantic film produced in 2001. 

If there are linked data resources related to the movies in a movie list, this 

new data is aggregated to the list. The URIMapping folder contains the updated 

version of our movie lists. Table 7 below illustrates another sample of a movie 

list. It is worth noticing that Table 7 makes use of DBpedia and LinkedMDB 

namespaces in order to depict the URI examples. 

Table 7: Romantic Comedy URIs 

Title DBpedia LinkedMDB 

Pretty Woman dbr:Pretty_Woman movie:38681 

When Harry Met Sally... dbr:When_Harry_Met_Sally... movie:38172 

Notting Hill dbr:Notting_Hill_(film) movie:536 

Serendipity dbr:Serendipity_(film)  movie:2452 

 

Then, we retrieve the data about the movie and store it in the DataGraph 

folder. We chose turtle (.ttl) format because it is one of the lightest alternatives to 

represent linked data. The code below illustrates part of the data extracted about 

a movie: 
<http://data.linkedmdb.org/resource/film/2452> 

a <http://data.linkedmdb.org/resource/movie/film> ; 

<http://www.w3.org/2000/01/rdf-schema#label> 

"Serendipity" ; 

 

Figure 10 below exemplifies the Path Finding algorithm. We use the Box-

Arrow Notation to represent the Linked Data graph. Additionally, we use dashed 

arrows to differ the connections that are specific to the Predator Movie data 

graph, although the Path Finding algorithm considers the union of both. 
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Figure 10: Serendipity-Predator connection paths 

Considering the above data graph, the Path Finding algorithm extracts the 

connection paths for CP(Serendipity,Predator) as: 

• (Serendipity, Alan Silvestri (Music Contributor), Predator),  

• (Serendipity, Alan Silvestri (Music Contributor), Predator2, 

Predator), 

• (Serendipity, Alan Silvestri (Music Contributor), Predator2, 

Predator).  

It is worth noticing that there are two connection paths of the form 

(Serendipity, Alan Silvestri (Music Contributor), Predator2, Predator) because 

there are two triples linking Predator and Predator2: (Predator, 

mdb:movie/sequel, Predator2) and (Predator2, mdb:movie/prequel, Predator). 

Therefore, the Pair Ranking algorithm assigns a score of 4 to the first 

connection path because it has length 2, and the second and third connection 

paths receive a score of 2, each. Thus, the final score for the pair (Serendipity, 

Predator) is 8. 

Data that depict information about a pair are stored in JSON format in the 

Pair folder of the dataset. 

Finally, the Pair Ranking algorithm orders all the pairs where the 

Serendipity movie appears. The Pair Ranking algorithm also filters the three pairs 

with higher scores. The final output for the Serendipity movie is depicted in Table 

8, which represents the three movies that are more likely to produce 

serendipitous suggestions for the Serendipity movie, according to the Serendipity 

Movie Test Dataset. Therefore, any application that retrieves data about the 

Serendipity movie might also include data about these three movies, as 

serendipitous suggestions to the user. 
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Table 8: Recommendations for Serendipity movie 

Title Score 

Identity 12 

Predator 8 

Cars 8 

 

Since the final response includes movie titles and Linked Data URIs, an 

application that uses Serendipity Movie Test Dataset might include links to the 

RDF resources that these URIs represent. Recommendations are stored in JSON 

format in the Recommendation folder of the dataset. 

Before moving to the next section, we present another example, sketched 

in Figure 11, to illustrate the Path Finding algorithm for the pair When Harry 

meets Sally… and Misery.  

 

Figure 11: WHMS-Misery connection paths 

For this example, the Path Finding algorithm extracts the connection paths 

for CP(When Harry meets Sally…,Misery) as: 

• (When Harry meets Sally…, Rob Reiner (Director), Misery) that 

appears four times,  

• (When Harry meets Sally…, Marc Shaiman (Music Contributor), 

Misery),  

• (When Harry meets Sally…, Andrew Scheinman (Producer), 

Misery), and  

• (When Harry meets Sally…, Rob Reiner (Producer), Misery).  
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It is worth noticing that there are four connection paths of the form (When 

Harry meets Sally…, Rob Reiner (Director), Misery) because there are two 

properties linking each movie to its director, foaf:made and mdb:movie/Director. 

Another information from Figure 11 is that LinkedMDB represents Rob Reiner 

(Director) and Rob Reiner (Producer) as two distinct entities. 

Since all connection paths CP(When Harry meets Sally…,Misery) have 

length two, the Pair Ranking algorithm assigns a score of 4 to each connection 

path found. Therefore, the final score for the pair (When Harry meets 

Sally…,Misery) is 28. 

Table 9 introduces the final output for the When Harry meets Sally… movie 

since there was no third movie satisfying the requirements for serendipity 

suggestion. 

Table 9: Recommendations for WHMS movie 

Title Score 

Misery 28 

Hairspray 4 

 

 

6.5. Lessons Learned  

This chapter presents the steps and design decisions involved in the construction 

of the Serendipity Movie Test Dataset. The main challenges encountered can be 

summarized as follows. 

The dataset construction process is divided in steps so that the output of 

each step is used as input for the following step. The motivation for this 

requirement is twofold. First, the process does not need to be restarted if a single 

step presents errors. On the contrary, in case an error occurs in a given step, 

only later steps need to be reprocessed. Second, this allows each step to be 

validated since the entire process can be restarted and the result of each step 

can be compared with former results. 

As happened with the SOL-Tool application, latency represented a critical 

factor for the dataset construction process as the RDF data graphs are queried 

from Linked Data live datasets. In order to address this issue, the RDF data 

retrieval is restricted to a single step. This limited the impact of latency in the 

overall execution of the dataset construction process. 

A different strategy that we applied to address latency is to combine 

multiple SPARQL queries in a single query with union clauses so that secondary 
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queries become unnecessary. Unfortunately, this strategy does not present the 

desired outcome when the endpoint fails to respond. 

It is worth noticing that different dataset endpoints present different 

capabilities. In some circumstances, RDF dump files can be used as data 

sources instead of remote dataset endpoints. 

The initial proposal of our Linked Data benchmark dataset for serendipitous 

suggestions included movies and music domain. The purpose of the Serendipity 

Music Test Dataset was to suggest music artists that are serendipitously related 

to a given music artist. The global classifier function that divides the universe of 

artists in partitions is the music genre feature. The rest of this section 

summarizes the challenges that interpose the construction of a serendipitous 

music dataset. 

We used the Musicbrainz9 dataset as the data source for searching entities 

of the music domain. We applied the dataset construction process to the music 

domain in a similar manner to the movie domain: relevant music entities were 

extracted from Google Search results; those entities were mapped to RDF 

resources of the Musicbrainz dataset using the same strategy as that adopted for 

the LinkedMDB dataset. In spite of the easy start of the dataset creation, two 

issues complicated the following steps. 

The task of retrieving entity data faced one complication factor. In the music 

domain, the number of SPARQL requests increased considerably since each 

music artist presents connections to a high number of music tracks and related 

entities. As a consequence, the performance decreased as a high number of 

secondary requests are dispatched to the dataset endpoint taking much more 

time to build the RDF data graph of a single source entity. Again, this factor can 

be mitigated with the use of dump files or optimization techniques, such as the 

map-reduce strategy. 

We faced a similar problem when discovering connection paths. In the 

Musicbrainz dataset, music tracks do not present a rich network of related 

entities. As a consequence, there are not many connection paths connecting two 

music artists through music tracks in the dataset. For this situation, a different 

algorithm could be used to analyze the relatedness of two music artists from 

different music genres. For instance, instead of extracting the connection paths, 

keywords could be extracted from music tracks in order to compute the similarity 

between a pair of musical artists.  

                                                
9 http://dbtune.org/musicbrainz/ 
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6.6. Chapter Summary  

In this chapter, we described a dataset, called the Serendipity Movie Test 

Dataset (Eichler et al. 2018), created to support the evaluation of approaches that 

address the serendipity relatedness problem. The dataset includes 404 entities, 

represented in DBpedia and in LinkedMDB, and pertaining to the movie domain, 

from which 965 entity pairs were generated and ranked by a serendipity criterion. 

In this chapter, we also present the main steps and decisions necessary to 

build a serendipity benchmark dataset based on Linked Data. 

According to our strategy, a pair of entities is understood to be 

serendipitously related if the entities belong to different partitions (i.e., 

cinematographic genres) and yet share a reasonable amount of connections. The 

ranking process considers the connection paths shared by the entities in a pair.  
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7                                                                                         
Related Work 

7.1.Introduction 

Our research builds upon the combination of two topics of study: Linked Data 

search applications and serendipity applications. Therefore, in order to position 

our work, it is necessary to consider both areas of study and discuss the 

challenges and opportunities of combining them. 

 

7.2.Linked Data search applications 

Heath and Bizer (2011) describe Linked Data search engines as applications that 

“crawl the Web of Data and provide sophisticated query capabilities on top of the 

complete data space”. Since the rise of the Web of Data, several applications 

were developed with this purpose,adopting different approaches. 

In order to enable a user-friendly interface, several applications provide 

keyword-base search operations such as SWSE (Harth et al. 2008), Sig.ma 

(Tummarello et al. 2010), KEYRY (Bergamaschi et al. 2011), (Haslhofer et al. 

2013). This approach provides user interaction similar to that of popular search 

engines, like Google, Bing and Yahoo. The application displays a search box 

where the user can submit keywords related to the object that he is interested in 

and, then, the application returns a list of results that match the search criteria. 

The Semantic Web Search Engine – SWSE (Harth et al. 2008) is a search 

engine that enables the keyword-based search and navigation of Linked Data 

resources in an object-oriented manner. In order to achieve this goal, the SWSE 

architecture implements components for crawling, integrating, indexing and 

querying across multiple data sources. 

Similarly, sig.ma (Tummarello et al. 2010) is a keyword search application 

that aggregates data about a resource from multiple datasources. 

Haslhofer et al. (2013) present a query expansion technique to improve the 

search results and provide a more suitable response to the submitted query. The 

SKOS vocabulary is used to enable two expansion techniques: term expansion 
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and URI expansion. In this way, a query can be expanded with the inclusion of 

synonyms, broader or narrower terms. 

As Freitas et al. (2012) point out, one characteristic of such approach is 

that it favors usability with intuitive operations over query expressivity that 

represents the ability of directly referencing elements of the dataset. This way, 

two characteristics of the Web of Data encourage the relaxing of expressivity of 

the keyword-base approach. First, given the scale of the Web of Data, it becomes 

infeasible for users to know the datasets structure a priori (Freitas et al. 2012). 

Second, it may be difficult to deal directly with the elements, since many datasets 

do not work with human readable URIs.  

To address this challenge, KEYRY (Bergamaschi et al. 2011) is a tool that 

translates keyword-based queries to SPARQL queries. According to the KEYRY 

approach, a matching algorithm is used to find the top-k elements that are best 

described with the keyword terms and the elements found are used to generate 

SPARQL queries. Finally, the generated queries are ranked in accordance with 

relevance and conciseness. 

A different approach of Linked Data search engines is to provide a 

centralized endpoint of the Web of Data not only for humans but also for other 

Linked Data applications. This approach commonly involves the use of a crawler 

to index documents, extract metadata, compute rankings and discover relations 

between documents. Sindice (Oren et al. 2008) is a search engine that provides 

the location of documents about a given resource. By simply providing the 

resource location, Sindice results may require additional analysis before they can 

be directly used for a particular use case. In a similar way, Hartig et al. (2009) 

and Watson (D’Aquin et al. 2008) resort to the use of crawlers in order to provide 

a single endpoint to the entire Web of Data. Unlike the other works, Watson 

considers data, document, hyperlinks and semantic links between them on its 

analysis.  

 

7.3.Serendipity applications 

Serendipity can be used in the Linked Data scenario with the objective of 

extracting data that, besides being relevant, discloses unexpected information. 

Thus, in the second part of this chapter, we present studies with different 

approaches to induce serendipity. 

 In order to discuss the strategies that address serendipity, we present the 

serendipity relatedness problem that consists of finding entities that are 
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serendipitously related to a source entity - in other words, entities that are able to 

surprise the user. When addressing the serendipity relatedness problem, the 

main adopted strategy (Ziegler et al. 2005, Abbassi et al. 2009, Zhang et al. 

2012) consists of following these two basic steps: (1) divide the entities in 

clusters according to distance metrics, (2) select entities that present a level of 

similarity from different clusters. The main argument in favor of this approach is 

that if the user is exposed to a more diverse result list, he is able to encounter 

more unexpected items.  

Ziegler et al. (2005) use a similarity function to compute entity distance 

according to the adopted taxonomy, where entities are ranked through 

collaborative filtering.  

Similarly, Abbassi et al. (2009) define the notion of item regions in order to 

introduce serendipity in a movie recommender system. Basically, in this work, 

movies and users are grouped into regions based on attribute similarity whereas 

collaborative filtering is used to identify regions that are underexposed to the 

users. Therefore, this approach is able to suggest movies that are strongly 

related to the user’s interest but which are not popular in his community. 

AURALIST (Zhang et al. 2012) combines item-based collaborative filtering 

with a clustering algorithm to produce serendipitous music recommendations. To 

introduce serendipity among its results, AURALIST computes clusters of artists 

that appear in user’s history based on similarity, then it selects artists at the edge 

of the clusters. For computing similarity, AURALIST adopts a similar approach to 

that of the Intra-List Similarity (Ziegler et al. 2005), with cosine similarity to 

compute the similarity between items in a cluster of related artists. 

In (Stankovic et al. 2011), the category representation of DBpedia is used 

to suggest lateral topics to a given subject. This approach relies on a shortest 

path distance algorithm to compute the proximity of the categories used in the 

graph exploration. 

In (Adamopoulos et al. 2011), a recommender system is presented. It aims 

at improving user’s satisfaction by combining unexpectedness with utility. To 

achieve this goal, the system calculates unexpectedness as the distance 

between an unvisited item and the set of all items visited by the user. Utility is 

understood as the overall rate of an item. 

In the scenario of Web search, Bordino et al. (2013) create a recommender 

system that induces serendipity by suggesting search queries that are relevant to 

the content of a page. The system extracts entities representing the content of a 

page and then builds a graph containing entities and queries. Finally, it adapts 
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the PageRank algorithm to this graph to associate entities with relevant query 

suggestions. 

As for exploratory search, Marie et al. (2013) use the spreading activation 

algorithm combined with sampling techniques to rank resources that are strongly 

related to the user’s interest. The authors argue that the spreading activation 

function may be customized to different strategies, such as introducing 

serendipitous connections. 

A different approach is taken by FEEGLI (Rahman et al. 2015), that 

augments search results with information extracted from Facebook ‘like’ activity 

from the user. Results that match the user interests are highlighted with a 

different color. 

Given the difficulty to define and analyze serendipity (Iaquinta et al. 2008), 

most studies opt to conduct experiments with users in order to gather feedback 

about how their approaches perform in suggesting serendipitous content (André 

et al. 2009b, Passant 2010b, Stankovic et al. 2011, Zhang et al. 2012, Marie et 

al. 2013, Taramigkou et al. 2013). As a consequence of this option, it turns out to 

be difficult to reproduce experiments and compare different strategies. 

When considering an automated form of evaluating serendipity, the most 

popular approach consists of measuring the unexpectedness of the results by 

comparing the acquired results with a more primitive baseline system, as 

proposed in (Murakami et al. 2007, Ge et al. 2010). However, one drawback of 

this approach is that the evaluation is sensitive to the baseline system, as 

Kaminskas and Bridge (2014) pointed out. 

To the best of our knowledge, at the time of this writing, there are no 

currently adequate benchmarks to equally compare different approaches. 

 

7.4.Summary 

The objective of this chapter is to position our work by comparing the projects 

presented in this thesis with the literature of Linked Data search applications and 

serendipity. 

The SOL-Tool combines some characteristics of (Stankovic et al. 2011). 

Similarly to our approach with analogy, (Stankovic et al. 2011) rely on the 

category representation of DBpedia to present unexpected suggestions. Although 

our approach uses the category structure of DBpedia, it does not depend on any 

specific category while (Stankovic et al. 2011) uses a set of categories as a 

starting point for the proximity computation.  
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The Serendipitous response for a query strategy (chapter 3) present similar 

behavior as the query expansion technique proposed in (Haslhofer et al. 2013). 

While (Haslhofer et al. 2013) relies on the SKOS vocabulary to guide the query to 

related content, our approach uses serendipity patterns. Furthermore, the 

Serendipitous response for a query strategy augments the search results 

similarly to FEEGLI. While FEEGLI highlights only the information that matches 

the ‘like’ activity, the SOL-Tool search engine provides new information related to 

search results and also provides some explanation of the connection by using the 

RDF syntax. 

The serendipity definition presented in Serendipity Movie Test Dataset 

adopts a similar strategy to that detailed in (Ziegler et al. 2005, Abbassi et al. 

2009, Zhang et al. 2012). Our strategy consists of dividing the datasets in 

partitions based on a global feature, genre, and linking entities from different 

partitions according to similarity criteria. 

Additionally, the dataset creation process described in chapter 6 resembles 

the method used in (Herrera et al. 2017) in that both studies exploit linked data 

graph structures. 
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8                                                                                
Conclusions and Future Work 

8.1. Summary of the Results 

In recent years, the World Wide Web witnessed a second revolution. The 

emergence of the Web of Data, a global data space where data is publicly 

available, enabled the creation of a new class of web applications. These 

applications must cope with data abundance in order to achieve their goals. 

In this thesis, we focused in the development of approaches that address 

the serendipity relatedness problem, i.e., the task of finding entities that are 

serendipitously related to a source entity. To address this goal, this thesis 

presents novel approaches to embody serendipity in the search process resulting 

in four contributions to the field. 

The first contribution is presented in Chapter 3 with a query orchestration 

process.  The query orchestration process encompasses different strategies in 

order to adapt the query execution and provide a more complete response to the 

user’s query. As a result, the process is composed of three strategies that add 

serendipity to the query process: Serendipitous response for a Query, 

Serendipitous alternatives for a Query and Serendipitous rebalancing of Query 

results. This contribution can be very useful for circumstances in which the 

normal execution of the query does not produce sufficient information. 

The second contribution is presented in Chapter 4, which formalizes a set 

of serendipity patterns to capture serendipity in the context of Linked Data 

search. These serendipity patterns are inspired in basic characteristics of 

serendipitous events, such as, analogy, unexpectedness and disturbance. The 

serendipity patterns can be used for capturing serendipitous connections on live 

Linked Data datasets and also increase the user satisfaction by providing 

interesting and non-obvious related entities. 

The third contribution of this thesis is the Serendipity Over Linked Data 

Search Tool – SOL-Tool, that is presented in Chapter 5. SOL-Tool is a Linked 

Data application that implements the ideas of Chapter 3 and Chapter 4. 

Additionally, the SOL-Tool modular architecture was designed to not only 

address the main challenges of a Linked Data search application but also support 
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extensibility so that new instances of its components can be created as needed. 

The experimental results present a promissory score of 90% of unexpectedness 

for real-world scenarios in the music domain. 

The second and third contributions resulted in (Eichler et al. 2017), a 

publication that was presented at the 2017 CAiSE Conference. An extended 

version of this study encompassing the first, the second and the third 

contributions is in preparation to be submitted to a journal. 

The fourth contribution of this thesis is a benchmark construction process 

that extracts entities, graphs and paths from the RDF datasets and is presented 

in Chapter 6. Along with the benchmark construction process, we reported the 

steps and design decisions involved in the construction. The steps are structured 

and can be extended to capture different particularities of the retrieved data, the 

given domain or the benchmark goal.  

The fifth contribution of this thesis is the Serendipity Movie Test Dataset, 

also presented in Chapter 6. The Serendipity Movie Test Dataset is a 

serendipitous suggestions benchmark for the movies domain and can be used to 

support the evaluation of approaches that address the serendipity relatedness 

problem. 

The fourth and fifth contribution is under revision to be submitted for 

publication.  

 

8.2. Suggested Future Work 

This section addresses the possibilities for future work of the two projects 

reported in this thesis: the Serendipity Over Linked Data Search Tool – SOL-Tool 

and the Serendipity Movie Test Dataset. 

The SOL-Tool is an application that encompasses different strategies to 

enhance the search process by introducing serendipity patterns over the results. 

The experimental results present a promising score of 90% of unexpectedness 

for real-world scenarios in the music domain.  

Nevertheless, the implementation of the SOL-Tool is ongoing work. In 

parallel, we are designing further experiments to measure the user degree of 

satisfaction and the quality of the serendipitous results, which proved to be a 

challenging goal. This qualitative evaluation enables the analysis of what 

strategies are more useful for the users. 

Additionally, another future work we intend to conduct is to reprocess the 

automated experiments with the SOL-Tool with the goal of evaluating each 
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serendipity pattern separately. This will enable a more granulated view of the 

impact of each serendipity pattern in the search process execution. 

Moreover, it is worth noticing that although the SOL-Tool application 

addressed serendipity for the music domain, it could be used for several other 

domains by extending some of its components. In fact, some components are 

already generically designed, such as, Surprising Observation,Latent Goals and 

Inversion Query Executor or Wrong Hypothesis Query Builder. As future work, we 

plan to extend the SOL-Tool architecture in order to address other domains, such 

as movies, books and arts. This will enable the SOL-Tool application to be 

explored in a wider range of scenarios. 

Finally, another future work we intend to conduct is the development of a 

keyword-based search application that shall use the SOL-Tool search engine to 

locate Linked Data serendipitous content, which will avoid the complexity of 

writing SPARQL queries. 

The Serendipity Movie Test Dataset was created to support the evaluation 

of approaches that address the serendipity relatedness problem. The dataset 

includes 404 entities, represented in DBpedia and in LinkedMDB, and pertaining 

to the movie domain. As future work, we plan to take advantage of the data 

retrieved to construct different classes of dataset benchmarks. Indeed, the 

Serendipity Movie Test Dataset is designed to support extensibility and 

customization by adopting different steps for dataset creation.  

As another future work, we intend to apply the proposed strategy to 

different domains, such as Music and Arts, so that the dataset could be explored 

in additional scenarios. In fact, the dataset construction process may consider 

multiple domains in the construction of a single dataset in order to capture cross 

domain serendipity connections. 

Additionally, the creation of a benchmark dataset for serendipity in the 

Music domain will enable new opportunities of study. For instance, the entities 

encountered by the QueryExecutors of SOL-Tool could be evaluated by this new 

dataset. 

Finally, we intend to conduct the design and execution of experiments with 

the users’ participation, in order to measure their degree of satisfaction as the 

quality of the serendipitous suggestions. 
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