

Jeronimo Sirotheau de Almeida Eichler

Exploring RDF Knowledge Bases through
Serendipity Patterns

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Ciências - Informática

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro
August 2018

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

Jeronimo Sirotheau de Almeida Eichler

Exploring RDF Knowledge Bases through

Serendipity Patterns

Thesis presented to the Programa de Pós-Graduação em
Informática of PUC-Rio in partial fulfillment of the requirements
for the degree of Doutor em Ciências – Informática. Approved
by the undersigned Examination Committee.

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Prof. Antonio Luz Furtado

Departamento de Informática – PUC-Rio

Prof.ª Simone Diniz Junqueira Barbosa
Departamento de Informática – PUC-Rio

Prof.ª Vânia Maria Ponte Vidal
UFC

Prof. Luiz André Portes Paes Leme
UFF

Prof. Bernardo Pereira Nunes
Departamento de Informática – PUC-Rio

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico da PUC-Rio

Rio de Janeiro, August 21st, 2018

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

All rights reserved.

 Jeronimo Sirotheau de Almeida Eichler

Jeronimo Sirotheau de Almeida Eichler holds a master in computer
science degree from Pontifical Catholic University of Rio de Janeiro
(PUCRio), and a Bachalor degree also in computer science from
Universidade Estadual do Rio de Janeiro (UERJ). Jeronimo has a solid
working experience with system development and architectural design
for Web plataforms. His main research topics areas include Semantic
Web, Information Retrieval, Data Mining and Machine Learning.

Bibliographic data

Eichler, Jeronimo Sirotheau de Almeida

 Exploring RDF Knowledge Bases through Serendipity Patterns /
Jeronimo Sirotheau de Almeida Eichler; advisor: Marco Antonio
Casanova. – 2018.

 82 f. : il. ; 30 cm

 Tese (Doutorado em Informática)–Pontifícia Universidade Católica
do Rio de Janeiro, Rio de Janeiro, 2018.

 Inclui bibliografia

 1. Informática – Teses. 2. Dados Interligados. 3. Fortuidade. 4. Web
Semântica. I. Casanova, Marco Antonio. II. Pontifícia Universidade
Católica do Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

I dedicate this thesis to the most important people in my life:
My parents and my brother.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

Acknowledgments

First and foremost, I would like to express my deep gratitude to my advisor, Prof.

Marco Antonio Casanova, who guided me across the entire path of this research.

Thank you for sharing your wisdom and also your total support, sense of humor,

inspiring ideas and kindness, not to mention your fantastic classes. It was an

honor and a joy for me to work with you in the last four years.

I would like to thank Prof. Antonio Furtado, who was always available to help and

collaborate. Thanks for sharing your enthusiasm with the Serendipity subject as

well as generously sharing your thoughts and your time.

I would like to extend my appreciation and gratitude to the Department of

Informatics of PUC-Rio. Coursing DI disciplines was a great opportunity for

exploring and validating some of the topics that this thesis addresses. Studying at

PUC-Rio was a determinant step in my professional life.

This study was financed in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Last, but not least important, my acknowledgements would not be completed

without giving special thanks to my family. To my father Rodolfo and my mother

Patricia, for the endless support, comprehension and care. To my brother Bruno,

for being so supportive and always keeping me motivated. None of this would be

possible without you. I love you all, thanks.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

Abstract

Eichler, Jeronimo Sirotheau de Almeida; Casanova, Marco Antonio
(advisor). Exploring RDF Knowledge Bases through Serendipity
Patterns. Rio de Janeiro, 2018. 82p. Tese de Doutorado - Departamento
de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Serendipity is defined as the discovery of a thing when one is not searching

for it. In other words, serendipity means the discovery of information that provides

valuable insights by unveiling unanticipated knowledge. The topic is receiving

increased attention in the literature, since the precision requirement may be

justifiably relaxed in order to improve user satisfaction. A field that can benefit

from serendipity is the Web of Data, an immense global data space where data is

publicly available. As more and more data become available in this data space,

searching and extracting relevant information becomes a challenging task. This

thesis contributes to addressing this challenge in two ways. First, it presents a

query orchestration process that introduces three strategies to inject serendipity

patterns in the query process. The serendipity patterns are inspired by basic

characteristics of serendipitous events, such as, analogy and disturbance, and

can be used for augmenting the results with additional information, suggesting

alternative queries or rebalancing the results. Second, it introduces a benchmark

dataset that can be used to compare different approaches for locating

serendipitous content. The strategy adopted for constructing the dataset consists

of dividing the dataset into partitions based on a global feature and linking entities

from different partitions according to the number of paths they share.

Keywords
Linked Data; Serendipity; Information Retrieval; Data Mining.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

Resumo

Eichler, Jeronimo Sirotheau de Almeida; Casanova, Marco Antonio
(orientador). Explorando Bases de Conhecimento em RDF através de
Padrões de Fortuidade. Rio de Janeiro, 2018. 82p. Tese de Doutorado -
Departamento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

Fortuidade pode ser definida como a descoberta de algo que não está

sendo buscado. Em outras palavras, fortuidade trata da descoberta de

informação que provê valiosas intuições ao desvendar conhecimento

inesperado. O tópico vem recebendo bastante atenção na literatura, uma vez

que precisão pode ser justificadamente relaxada com o objetivo de aumentar a

satisfação do usuário. Uma área que pode se beneficiar com fortuidade é a área

de dados interligados, um gigantesco espaço de dados no qual dados são

disponibilizados publicamente. Buscar e extrair informação relevante se torna

uma tarefa desafiadora à medida que cada vez mais dados se tornam

disponíveis nesse ambiente. Esta tese contribui para enfrentar este desafio de

duas maneiras. Primeiro, apresenta um processo de orquestração de consulta

que introduz três estratégias para injetar padrões de fortuidade no processo de

consulta. Os padrões de fortuidade são inspirados em características básicas de

eventos fortuitos, como analogia e perturbação, e podem ser usados para

estender os resultados com informações adicionais, sugerindo consultas

alternativas ou reordenando os resultados. Em segundo lugar, introduz uma

base de dados que pode ser utilizada para comparar diferentes abordagens de

obtenção de conteúdo fortuito. A estratégia adotada para construção dessa base

de dados consiste em dividir o universo de dados em partições com base em um

atributo global e conectar entidades de diferentes partições de acordo com o

número de caminhos compartilhados.

Palavras-chave
Dados Interligados; Fortuidade; Aquisição de Informação; Mineração de

Dados.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

Table of Contents

1 Introduction 13

1.1. Context and Motivation 13

1.2. Goal and Contributions 15

1.3. Structure of the Thesis 16

2 Background 17

2.1. Linked Data Background 17

2.2. Serendipity Background 20

2.2.1. The Information Encounter Experience 20

2.2.2. Serendipity Patterns 22

3 A Query Orchestration Process for Serendipity 24

3.1. Introduction 24

3.2. A Framework for Query Orchestration 25

3.3. Serendipitous response for a query 28

3.4. Serendipitous query alternatives 29

3.5. Serendipitous rebalancing of a query’s results 30

3.6. Simulated Annealing 31

3.7. Chapter Summary 32

4 Serendipity Patterns 34

4.1. Introduction 34

4.2. Capturing the Analogy Pattern 35

4.3. Capturing the Surprising Observation Pattern 37

4.4. Capturing the Latent Goals Pattern 39

4.5. Capturing the Inversion Pattern 40

4.6. Capturing the Wrong Hypothesis Pattern 41

4.7. Capturing the Disturbance Pattern 43

4.8. Chapter Summary 43

5 SOL-Tool 45

5.1. Introduction 45

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

5.2. Concurrent Dataset Request 47

5.3. Evaluation 48

5.4. Lessons Learned 51

5.5. Chapter Summary 52

6 A Serendipity Movie Test Dataset 53

6.1. Introduction 53

6.2. A Generic Path Finding and Ranking Process 54

6.3. Constructing the Serendipity Movie Test DataSet 55

6.3.1. Overview of the Construction Process 55

6.3.2. Selecting Entity Pairs 56

6.3.3. Linked Data URI Mapping 57

6.3.4. Retrieving Entity Data 59

6.3.5. Discovering Connection Paths 60

6.3.6. Ranking Entity Pairs 62

6.3.7. Output 63

6.4. Case Study Example 63

6.5. Lessons Learned 67

6.6. Chapter Summary 69

7 Related Work 70

7.1. Introduction 70

7.2. Linked Data search applications 70

7.3. Serendipity applications 71

7.4. Summary 73

8 Conclusions and Future Work 75

8.1. Summary of the Results 75

8.2. Suggested Future Work 76

9 Bibliography 78

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

List of Figures

Figure 1: LOD cloud diagram in 2017 14

Figure 2: RDF triple examples 19

Figure 3: Serendipitous response 29

Figure 4: Result list of an alternative query 30

Figure 5: Serendipitous rebalancing 31

Figure 6: The SOL-Tool Architecture 45

Figure 7: MapReduce Strategy 48

Figure 8: Data Model of the dataset Construction Process 56

Figure 9: Google Search example 57

Figure 10: Serendipity-Predator connection paths 65

Figure 11: WHMS-Misery connection paths 66

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

List of Tables

Table 1: URI examples 17

Table 2: Namespaces 18

Table 3: RDF triple examples 19

Table 4: Experimental results. 50

Table 5: Weight distribution 62

Table 6: Romantic Comedy movies 63

Table 7: Romantic Comedy URIs 64

Table 8: Recommendations for Serendipity movie 66

Table 9: Recommendations for WHMS movie 67

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

He who does not expect will not find out the unexpected,

for it is trackless and unexplored.
Heraclitus of Ephesus

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

1
Introduction

1.1.Context and Motivation

In recent years, the World Wide Web has evolved from a global information

space of linked documents to a space where data can also be linked. This new

paradigm of Web of Data, in addition to the Web of Documents, provides ways to

make data more accessible and build knowledge from combined data. From the

user’s perspective, the main goal of Linked Data is the provision of integrated

access to data from a wide range of distributed and heterogeneous data sources

(Bizer et al. 2009).

To support these goals, the Linked Data initiative (Berners-Lee 2009) has

emerged as a set of best practices that aims at standardizing the linking data

process. Thanks to this, an unprecedented amount of linked data sources was

recently produced, and continues growing fast covering diverse domains - such

as geographic locations, people, companies, books, films, music, statistical data

and scientific publications (Heath & Bizer 2011).

At the time of this writing, the Linked Open Data cloud (LOD cloud), a

repository for interlinked Linked Data datasets, contains 1,184 datasets and

aggregates more than 198 trillion triples (Abele et al. 2017), as depicted in Figure

1. DBpedia1, the Linked Data version of Wikipedia repository, contains alone

almost 10 trillion triples (Abele et al. 2017).

1 http://wiki.dbpedia.org/

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

14

Figure 1: LOD cloud diagram2 in 2017

As a consequence of this initial progress, a new challenge arose. With the

proliferation of Linked Data datasets and more and more data becoming

available, filtering these large datasets in order to support a goal becomes a

challenging task.

Similarly to the Web of Documents, in the Web of Data, the overall

approach adopted by search applications is to locate resources that are strongly

related to the user’s needs. Thereby, the main goal is to maximize the accuracy

among the search results.

However, studies (Murakami et al. 2007, Ge et al. 2010) argue that this

strategy alone may conduct the user into a new set of problems and, thereby,

decrease the user satisfaction. For instance, an application that only considers

accuracy can imprison the user in an information bubble where he is only

exposed to information of a certain niche or, even worse, to a kind of information

he already knows. These studies argue that other factors, such as surprise and

discovery, can improve user satisfaction even at the cost of a small loss in

precision. For this reason, these studies suggest that other metrics, such as

serendipity, ought to be considered in order to analyze the user satisfaction.

Serendipity is receiving increased attention in the literature as a process

of breakthrough discovery caused by chance encounters (André 2009a).

According to André (2009a), serendipity involves the surprise of finding

2 http://lod-cloud.net/

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

15

something unexpected, and the sagacity necessary to unveil an unexpected

connection.

This way, strategies that induce serendipitous suggestion can improve user

satisfaction by challenging the user to pursue new directions and discover further

information.

1.2.Goal and Contributions

This thesis reports contributions to Linked Data search. More specifically, we

adopt serendipitous concepts in order to suggest unexpected items and better

support user’s goals.

Our first contribution is a query orchestration process that describes

different strategies to adapt the query execution with the objective of providing a

set of behaviors in order to produce a more complete response for the user’s

goals.

A second contribution of our thesis is the definition and formalization of a

set of serendipity patterns in the context of Linked Data search. These

serendipity patterns capture serendipitous connections on live Linked Data

datasets.

The first and second contributions are validated with SOL-Tool, a Linked

Data application that implements theirs concepts and ideas. The experimental

results present a promising score of 90% of unexpectedness for real-world

scenarios in the music domain.

Our third contribution is a benchmark creation process that defines the

necessary steps for building a dataset that exploits Linked Data resources. The

steps are structured and can be extended to capture different particularities of the

retrieved data, the given domain or the benchmark goal. The dataset construction

process also discusses the main challenges and design decisions that impact the

dataset creation.

Our fourth contribution is a benchmark created to support the evaluation

of approaches that present serendipitous suggestions for the movies domain, the

Serendipity Movie Test Dataset. In order to create the suggestions, the

benchmark considers entities, graphs and paths extracted from the LOD cloud

that pertain to the movies domain.

An additional contribution of this thesis is a related work overview of the

state-of-the-art of the strategies and applications that use serendipity to support

users' goals.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

16

1.3.Structure of the Thesis

The remainder of this thesis is structured as follows. In Chapter 2, we introduce

the background concepts that are used throughout the thesis. More specifically,

we first present Linked Data definition and examples and then we review the

serendipity literature by discussing the notion of serendipity and examining a set

of serendipity patterns. In Chapter 3, we describe a query orchestration process

that enables the customization of different phases of the query execution. Still in

Chapter 3, we introduce three strategies to inject serendipity in the query

process. In Chapter 4, we formalize a set of serendipity patterns to capture

serendipity in the context of Linked Data search. In Chapter 5, we describe the

SOL-Tool application, which implements the query orchestration process and

encompasses a set of the serendipity patterns. Also, in Chapter 5, we present the

experiments with the tool. In Chapter 6, we describe the Serendipity Movie Test

Dataset, a benchmark dataset that can be used to compare different approaches

for locating serendipitous content. Still in Chapter 6, we present the necessary

steps for building the dataset. In Chapter 7, we provide an overview of the state-

of-the-art in the field by combining the topics of serendipity and Linked Data

search engines. Finally, in Chapter 8, we draw the conclusions and indicate

opportunities of future work.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

2
Background

2.1. Linked Data Background

Since the projects presented in this thesis use data extracted from the LOD

cloud, we start by recalling a few concepts related to the Resource Description

Framework (RDF) data model (Cyganiak et al. 2014) and SPARQL query

language (Harris & Seaborne 2013).

A Uniform Resource Identifier (URI) represents an entity of the real world. A

literal is a string representing a (datatype) value. An RDF term is a URI or a

literal. Table 1 depicts examples of URIs from The Beatles members in DBpedia.

Table 1: URI examples

URI

http://dbpedia.org/resource/John_Lennon

http://dbpedia.org/resource/Paul_McCartney

http://dbpedia.org/resource/George_Harrison

http://dbpedia.org/resource/Ringo_Starr

The RDF data model allows shortening a URI reference by declaring a

namespace that depicts the set of URIs in a vocabulary. For example, by

describing the DBpedia resources namespace as dbr, one may refer to

http://dbpedia.org/resource/John_Lennon entity as

dbr:John_Lennon. This is not a mandatory requirement but we adopt the

notation in this study for a matter of readability.

Table 2 lists the namespaces and vocabularies that are referenced in this

study. The sol namespace presents terms that are declared in this thesis.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

18

Table 2: Namespaces

Namespace Vocabulary

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

owl http://www.w3.org/2002/07/owl#

dct http://purl.org/dc/terms/

skos http://www.w3.org/2004/02/skos/core#

dbr http://dbpedia.org/resource/

dbc http://dbpedia.org/resource/Category:

dbo http://dbpedia.org/ontology/

dbp http://dbpedia.org/property/

mdb http://data.linkedmdb.org/resource/

movie http://data.linkedmdb.org/resource/film/

foaf http://xmlns.com/foaf/0.1/

sol http://soltool.com/

Entities are typically assigned to classes, which may in turn be organized

as a class hierarchy. This is captured in RDF with the help of the predefined

terms rdf:type, rdfs:Class and rdfs:subclassOf, where the first term

belongs to the RDF vocabulary and the last two terms to the RDF Schema

vocabulary. The term owl:Thing of the OWL vocabulary denotes the universe,

i.e., the set of all things.

An RDF triple is a statement (s,p,o), where s and p are URIs and o is either

a URI or a literal; a triple (s,p,o) states that its subject s has property p whose

value is object o. We disregard the so-called blank nodes, which could always be

replaced by Skolem URIs (Cyganiak et al. 2014).

We also take into consideration the annotation property rdfs:seeAlso

and the OWL property owl:sameAs. rdfs:seeAlso is used to indicate an

entity that might provide additional information about the subject entity, whereas

the owl:sameAs property is used to indicate that two URI references refer to the

same thing i.e. they represent the same real-world object.

Table 3 illustrates examples of RDF triples declared in DBpedia.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

19

Table 3: RDF triple examples

Subject Property Object

dbr:John_Lennon dct:subject dbc:English_rock_guitarists

dbr:John_Lennon dct:subject dbc:English_rock_singers

dbr:Imagine:_John_Lennon dbo:musicComposer dbr:John_Lennon

dbr:Paul_McCartney dct:subject dbc:English_rock_guitarists

dbr:Paul_McCartney dct:subject dbc:English_rock_singers

dbr:Spies_Like_Us dbo:musicComposer dbr:Paul_McCartney

dbr:Ringo_Starr dct:subject dbc:English_rock_drummers

Figure 2 is a graphic representation of the data presented in Table 2. We

use the Box-Arrow Notation to represent the RDF triples, with boxes representing

subjects and objects of RDF triples, while arrows represent properties of RDF

triples.

Figure 2: RDF triple examples

We use the SPARQL query language (Harris & Seaborne 2013) to access

datasets. A SPARQL query is composed of a set of triple patterns (?s,?p,?o)

where ?s and ?p can be URIs or variables and ?o may be either a URI, a literal or

a variable. If a triple matches all the triple patterns of a SPARQL query, it is

understood as a solution for that query. Furthermore, the solutions of a SPARQL

query can be projected into a list of variables, for a select query, or a list of

triples, for a construct query.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

20

The SPARQL query below selects all entities that are presented in a triple

which property matches dct:subject and object matches

dbc:English_rock_singers. Therefore, according to Table 3, the entities

dbr:Paul_McCartney and dbr:John_Lennon are to be presented among the

query results.

Selecting English rock singers
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX dbc: <http://dbpedia.org/resource/Category:>

SELECT distinct ?subject WHERE{

?subject dct:subject dbc:English_rock_singers.
}

2.2. Serendipity Background

Serendipity is defined as “the art of making an unsought finding” (Van Andel

1994). The term was coined by Horace Walpole, based on the tale of The Three

Princes of Serendip, wherein the mentioned princes made several discoveries of

things they were not looking for by accident and sagacity. In the literature, the

term serendipity is used to describe a breakthrough discovery caused by chance

encounters (André 2009a). As described in (André 2009a), there are two key

aspects of serendipity: the accidental nature and the surprise of finding

something unexpected, the chance; the breakthrough or discovery made by

drawing an unexpected connection, the sagacity. That is, serendipity promotes

the encounter of unexpected information to provide valuable insights by unveiling

previously unknown knowledge.

The topic is receiving increased attention in the literature, since the

precision requirement may be justifiably relaxed in favor of extended recall if the

extra information supports the searcher’s current or latent goals.

2.2.1. The Information Encounter Experience

In her study of accidental discovery of information, Erdelez (1999) described four

elements involved in the information encounter experience: the encounterer, the

environment, the characteristics of the information encountered, the information

need.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

21

The encounterer is defined as the user who experiences an accidental

discovery of information. Erdelez (1999) also defined levels of encounterers

ranging from non-encounterers to super-encounterers, where non-encounterers

are users that present difficulty in finding information, while super-encounterers

are users who find information more easily. Although the notion typically

represents people, we argue that an encounterer can also be understood as an

agent or application that discovers the information.

The environment is the place where the information discovery occurs

(Erdelez 1999). Similarly to the encounterer elements, the environments may

differ in levels of information capabilities. In other words, some environments may

be more propitious for information discovery than others.

According to (Erdelez 1999), the information accidentally encountered can

be classified as problem-related or interest-related. Problem-related information

belongs to a user’s specific problem, but not a problem that the user is pursuing

at the time the information was encountered. Therefore, problem-related

information supports latent goals (De Bruijn & Spence 2008), a topic that is later

discussed in this thesis. On the other hand, interest-related information depicts

information that the user would probably not search beforehand in spite of its

potential use.

The information encountering experience can also be classified by the

relation between the information found and the need that it addresses. For

example, information may lose its relevance with time, e.g., a weather condition.

This way, a serendipity event may be enhanced or even induced by

favoring the information encounter experience factors. Thus, a critical factor for

achieving serendipity is the ability of the encounterer to draw connections

between pieces of information to build new information, in other words, the

encounterer’s sagacity (André 2009a). To support this goal, the encounterer must

have the ability to compare models from different domains and recognize similar

concepts. We adopt similar strategy to capture the serendipity patterns in our

query orchestration process.

Due to its characteristics, the Web of Data with networks of data to be

navigated and explored represents an especially auspicious environment for

serendipity events.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

22

2.2.2. Serendipity Patterns

In an extensive study of serendipity, Van Andel (1994) lists seventeen serendipity

patterns, each one representing a different form in which serendipity can occur.

In this section, we concentrated on the patterns that we found to be best

amenable to be captured in the context of Linked Data search.

The analogy pattern is characterized by seeking similarity between objects

from the same or totally distinct domains (Van Andel 1994). Analogy is also

defined as seeing (or describing) something in terms of something else (Burke

1941). Basically, it consists of extracting relevant characteristics of an object in

order to apply this knowledge to identify another object. A widely popular

example of analogy is the insight of Archimedes to measure a crown’s volume

after stepping into a bathtub.

The surprising observation pattern is characterized by surprise caused by

an unexpected event. It indicates a trail that can lead to new information about a

known entity and represents the fact that some entities can have different facets

(or views) covering different domains. A subpattern of surprising observation is

the repetition of surprising observation. As the name implies, it involves the

recurrence of the previous pattern and serves as a strong indication of the

relevance of the respective observation. To illustrate the repetition of the

surprising observation pattern, Van Andel (1994) cites the discovery of AIDS as

an epidemic after registering a high number of cases.

The inversion pattern changes the expectation of the experiment, guiding

the solution towards a completely new direction. It establishes a breakthrough

discovery where the insight is the opposite to the previous intent. To illustrate the

Inversion pattern, Van Andel (1994) tells the story of McLean, that during his

research of blood clotting factors discovered heparine as anticoagulant, in other

words, a factor that prevents blood clotting (McLean was investigating a drug that

caused blood clotting).

The wrong hypothesis pattern is characterized by the experience of

evaluation of a hypothesis with an outcome that, although proven false, is

surprising enough to incite the formulation of new hypotheses. The wrong

hypothesis pattern represents one of the most interesting aspects of serendipity,

the adaptation to face an unexpected obstacle, which can be summarized in the

proverbial sentence "When life gives you lemons, make lemonade".

The disturbance pattern is characterized by a change of perception caused

by an occurrence that affects the regular activity of a person. The disturbance

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

23

pattern is fired by a chaotic event that introduces other variables into the problem.

For example, Van Andel (1994) narrates the creation of Radio-astronomy that

originated from the noise observed in transatlantic telephone calls, with a

periodicity of 23 hours and 56 minutes.

Finally, just to give an example of a pattern which is not amenable to (a

straightforward) formalization in the context of Linked Data search, we cite

Introspective Chance Encounter (Lot 1956 apud Van Andel 1994), a super

category group. Van Andel (1994) assigns three patterns to this (super) category

– playing, joke and dream. In opposition to the previous patterns, this group

contains serendipity patterns that occur during intellectual activities (Lot 1956

apud Van Andel 1994) and, therefore, are not further discussed in the rest of this

thesis.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

3
A Query Orchestration Process for Serendipity

3.1. Introduction

To perform a serendipitous search, we apply a query orchestration process

(Cuppens et al. 1988) that enables the application to transform a submitted

query. This allows the application to act before or after the query is actually

executed. Therefore, the application can adopt different strategies at different

phases of execution.

We adopt the definition of question, answer and response (Webber 1986)

in order to describe the interactions of the query orchestration process. Question,

according to (Webber 1986), represents a request for information or a request to

performing an act. In serendipitous search, the submitted query plays the role of

the question. Answer represents the information or act directly requested

(Webber 1986). In serendipitous search, the answer comprises the results

acquired by the simple execution of the submitted query, in other words, it is the

information that satisfies the question. Finally, response comprises the complete

reaction to the question. Response can be one or the combination of the

following items: an answer, additional information, information instead of an

answer, a question, etc (Webber 1986).

For serendipitous search, the definition of response is useful when the

answer is not necessarily enough to address the goals manifested in the

question. The query orchestration processing is used to provide additional

information for a query.

We resort to three main strategies to capture the selected serendipity

patterns with the query orchestration process. Given a query Q, a serendipitous

processing of Q consists of the combination of the following components:

Serendipitous response for Q, Serendipitous alternatives for Q and Serendipitous

rebalancing of Q results.

We conclude the chapter with a discussion about simulated annealing, a

metaheuristic for optimization that can be used for managing the level of

serendipity introduced in the results.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

25

3.2.A Framework for Query Orchestration

In order to design the query orchestration process, we propose the definition of

conditions and serendipity patterns.

A condition is a function that evaluates if a RDF term or a set of RDF terms

satisfy a set of triple patterns in a RDF dataset. Let G be an RDF dataset, t1,…,tn

be a set of RDF terms and TP be a set triple patterns with v1,…,vn variables. A

condition replaces vi by ti in TP, for each i ∈ [1,n], and returns true if there is a

solution of TP found in G, otherwise it returns false.

The pseudo-code CON1 exemplifies a condition that checks if a given RDF

term is an English rock guitarist. For example, if the entity dbr:John_Lennon

and DBpedia are evaluated with CON1, the result is true, while the result is false

for the entity dbr:Jimmi_Hendrix.

CON1 Condition with English rock guitarist category
CONST SUBJECT-PROPERTY: <http://purl.org/dc/terms/subject>
CONST RG-CATEGORY: <http://dbpedia.org/resource/Category:English_rock_guitarists>

Function GuitaristCondition (input: entity of RDFTerm, dataset of RDFGraph)

{

If(dataset.contains(Triple (entity, SUBJECT-PROPERTY, RG-CATEGORY)))
Return true;

Else
Return false;

}

The pseudo-code CON2 exemplifies a composed condition that checks if

two RDF terms are connected by the parent property.

CON2 Condition with parenthood relationship
CONST PARENT-PROPERTY: <http://dbpedia.org/ontology/parent>

Function ParenthoodCondition (input: father of RDFTerm, son of RDFTerm, dataset

of RDFGraph)

{

If(dataset.contains(Triple (son, PARENT-PROPERTY, father)))
Return true;

Else
Return false;

}

Additionally, a condition may depict an occurrence, which any element

satisfies the triple pattern. The pseudo-code CON3 exemplifies a composed

condition that checks if two RDF terms are connected by any property.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

26

CON3 Condition with any relationship

Function AnyPropertyCondition (input: subject of RDFTerm, object of RDFTerm,

dataset of RDFGraph)

{

If(dataset.contains(Triple (subject, ANY, object)))
Return true;

Else
Return false;

}

A serendipity pattern is a function that checks a set of conditions and, if all

conditions return true, a new RDF data graph is returned. Let G be an RDF

dataset, t1,…,tn be a set of RDF terms and C1,…,Cm be a set of conditions. A

serendipity pattern returns a new RDF data graph if Ci = true for each i ∈ [1,m].

The pseudo-code SP1 exemplifies a serendipity pattern that creates a RDF

triple connecting two entities through rdfs:seeAlso property if the conditions

are met i.e. both are English rock guitarists and there is also a property

dbo:parent connecting them.

SP1 Serendipity Pattern of CON1 and CON2
CONST SEEALSO-PROPERTY: <http://www.w3.org/2000/01/rdf-schema#seeAlso>

Function ParentAndGuitaristPattern (input: father of RDFTerm, son of RDFTerm,

dataset of RDFGraph)

{

If(GuitaristCondition(father,dataset)
AND GuitaristCondition(son,dataset)
AND ParenthoodCondition(father, son, dataset)

)
Return Triple (father, SEEALSO-PROPERTY, son);

Else
Return null;

}

The construction of the serendipity patterns using composition of conditions

allows the creation of a set of serendipity patterns that use different and

independent conditions to present the same relationship. This can be very useful

for representing a generic output that can be generated from different sets of

query patterns. For example, there may be a catalogue of serendipity patterns

specialized in analogy.

It is worth noticing that the code of SP1 can be translated in the SPARQL

query below without any loss of expressivity.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

27

SPQ1 Example of serendipity pattern represented as SPARQL query
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbc: <http://dbpedia.org/resource/Category:>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

CONSTRUCT {?baseEntity rdfs:seeAlso ?surpriseEntity} WHERE {

?baseEntity dbo:parent ?surpriseEntity.
?baseEntity dct:subject dbc:English_rock_guitarists.
?surpriseEntity dct:subject dbc:English_rock_guitarists.

}

Finally, the SPARQL query is transformed into a SPARQL query template.

This way, the query orchestration process is able to fill in the [input] field with a

RDF term originated from a previous interaction and process a secondary query

that retrieves results related to a specific entity.

For example, SPQT1 depicts the final representation of the serendipity

pattern illustrated in SPQ1 and SP1.

SPQT1 Example of serendipity pattern query template
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbc: <http://dbpedia.org/resource/Category:>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

CONSTRUCT {[input] rdfs:seeAlso ?surpriseEntity} WHERE {

[input] dbo:parent ?surpriseEntity.
[input] dct:subject dbc:English_rock_guitarists.
?surpriseEntity dct:subject dbc:English_rock_guitarists.

}

It is worth noticing that the serendipity pattern representation in a query

template simplifies the task of sharing the serendipity patterns across different

platforms. For example, a generic query processor can read the serendipity

pattern templates in order to embody serendipity amongst its search process.

Moreover, the user can submit his own serendipity pattern query templates

in order to inform the query orchestration process what conditions does he want

to disclose. Therefore, the query execution is able to process the user’s query,

retrieve the results and also finding content related to the results according to the

user’s definition of what serendipity is.

Additionally, each serendipity pattern presents not only a query template

but also metadata that the query orchestration process can use to adapt the

query execution. The serendipity pattern metadata include: (1) description of the

input parameters; (2) limit data that defines the maximum number of triples return

by the serendipity pattern; (3) a list of dataset endpoints, which the query

orchestration process can submit the serendipity pattern.

In addition, the query orchestration process retrieves metadata regarding

the serendipity pattern execution, such as the average number of RDF triples

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

28

found by each serendipity pattern and the average rating collected with the users.

This allows the query orchestration process to learn what serendipity patterns are

more useful and, subsequently, adapt its behavior.

3.3. Serendipitous response for a query

Given a query Q, a Serendipitous response for Q will add new triples to each

result of Q. More precisely, let D1,…,Dm be a set of datasets, called the query

environment, Q be a query over Dk, with k ∈ [1,m], X1,…,Xp be a set of

serendipity patterns. A serendipitous response for Q over D1,…,Dm is a list of

pairs of sets ((A1,S1),…,(An,Sn)) such that, for each i ∈ [1,n], Ai is a result of Q

over Dk, called the regular component of (Ai,Si), and Si is a set of triples, called

the serendipitous component of (Ai,Si), computed from the datasets in the query

environment, according to the serendipity pattern Xj, with j ∈ [1,p]. Additionally,

the Serendipitous response for Q may use results of a previously submitted query

Q' in order to compute the current serendipitous component.

We note that the triples in a serendipitous component Si may use terms in

the vocabulary and refer to entities outside the query environment. Indeed, the

analogy and the surprising observation patterns, presented in the next chapter,

are formalized as new queries that return triples which are serendipitously related

to the original result of Q. Such triples will form the second set in each pair of sets

in the result list.

Consider that a user is searching for English rock guitarists using

DBpedia. To address his goal the user may use the category English rock

guitarists to formulate the query. The regular component of the result list includes

entities that match the solution mapping of the query, such as, “Mick Jagger”,

“George Harrison”, and “John Lennon”. The serendipitous component contains a

set of triples that serendipitously connect new entities to those in the result list.

For example, the serendipitous component may return a set of triples linking

“John Lennon” to “Roy Harper” or “Ringo Starr”, based on a specified criterion.

The following chapter discusses the strategies to capture each serendipity

pattern. To simplify the discussion, all examples consider a query, referred to as

UQ1, about English rock guitarists:

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

29

UQ1 Entities from English rock guitarist category
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX dbc: <http://dbpedia.org/resource/Category:>

SELECT distinct ?entity WHERE{

?entity dct:subject dbc:English_rock_guitarists.

}

Note that this query uses the English rock guitarists category of DBpedia

and the dct:subject property from Dublin Core vocabulary, used to assign

entities to categories.

Figure 3 illustrates examples of serendipitous response for the query

UQ1, that searches for English rock guitarists using DBpedia. In this example, the

response includes additional information that presents serendipitous content

related to each result list item.

Figure 3: Serendipitous response

3.4. Serendipitous query alternatives

Given a query Q, a serendipitous alternative for Q will produce an alternative

query Q' so that the result list of Q’ presents some relatedness or a level of

similarity to the result list of Q. This way, a serendipitous alternative enables the

user to expand his search and encounter content that is not presented in the

original query.

Figure 4 illustrates an example of alternative query that presents a similar

set of results to those of the original query.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

30

Figure 4: Result list of an alternative query

3.5. Serendipitous rebalancing of a query’s results

The serendipitous rebalancing of Q results will reorder the serendipitous result list

of Q over the query environment in order to perturb the original query results

ordering.

The procedure consists of going through the ordered query results and

selecting pairs of items that are candidates for order swap. An activation function

can be used in order to randomly retrieve a set of swap candidate pair items and

the swap operation is executed only if a comparison between the two items

satisfies a condition.

It is worth noticing that the random selection of items represents an

important role in serendipitous rebalancing of Q results. This way, the procedure

addresses a fundamental aspect of serendipity, the chance factor. Additionally,

the activation function can be customized to allow the user to define the

proportion of candidates to be selected. Therefore, the user is able to choose the

level of serendipity that the strategy will apply.

For the pair comparison, the procedure adopts an ordering criterion other

than the result list ordering. Thus, the swap operation is executed only if the pair

items possess inverse positions in the ordering lists.

By introducing an external ordering criterion, the query process is able to

smooth the impact of the original result list ordering. The external ordering

criterion guarantees that the swap operation is not groundless.

It is also worth noticing that the serendipitous rebalancing of Q results may

take advantage of other serendipity search strategies. For instance, the

comparison function can order the pair items according to the number of triples

found in the serendipitous response for Q procedure.

Figure 5 illustrates how the result lists of a query can be rebalanced.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

31

Figure 5: Serendipitous rebalancing

3.6. Simulated Annealing

As a serendipitous event, by definition, introduces unexpected items, there is an

inherent risk of discontent, since the user can consider the results uninteresting

or worthless if he does not recognize the connection between the results and his

question (Shani et al. 2011). Iaquinta et al. (2008) argue that a serendipitous

encounter depends on the characteristics of the information seeker, such as,

curiosity, open mindedness and cultural background in accordance with Louis

Pasteur’s quote “chance favors the prepared mind”. Thus, the increase of

serendipity must be strategically done in order to mitigate the risk of confusing or

distracting the user (Ge et al. 2010). In the context of information retrieval, this

concern gains even more importance dealing not only with information overload

but also with performance, by selectively providing only relevant information to

the user’s interests.

Thus, there may be times when a serendipitous search application must

adopt a strategy to restrict the serendipity of the result set. An approach used for

similar problems is simulated annealing (Kirkpatrick 1984), a metaheuristic for

obtaining good solutions to difficult optimization problems at a reasonable

computing time (Eglese 1990).

Simulated annealing is a local search algorithm (Szu & Hartley 1987,

Eglese 1990). A commonly used example that illustrates the simulated annealing

heuristic is the hill climbing algorithm, which seeks for the maximum of a given

curve (Lim et al. 2006). The hill climbing algorithm starts with an initial solution,

perhaps chosen at random, and then, if a neighbor has a higher position than the

current position, the respective neighbor will become the current solution, and so

on until there are no higher positions. The problem of this approach is that the

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

32

algorithm can be trapped in a local optimum solution. To address this issue, the

simulated annealing algorithm allows a downhill move determined by some

suitable probabilistic mechanism. Thus, facing a local optimal solution, the

algorithm introduces a disturbance by adding a small worsening factor to the

respective solution, thereby enabling the exploration of more suitable solutions.

Analogously to the descent moves in the hill climbing example, a

serendipitous connection may represent a costlier operation, with an uncertain

outcome, than a simple and direct connection. In this eventuality, a mechanism is

provided for the purpose of deciding if a serendipitous connection should be

considered or ignored.

One way to achieve this goal is to let the user evaluate the proposed

strategies. If a serendipitous search application is able to gather data about user

interactions, the application is able to understand what the best strategies are for

the respective user. This way, strategies that are not well appreciated by the user

may receive lower probabilities for being activated while strategies that are

commonly used obtain higher probabilities.

Thus, understanding how the adopted strategies perform plays a crucial

role for serendipitous search. There are two major approaches to evaluate if a

given strategy performs well or not. One approach is to let the user rate the

strategy by asking him to rate how well it addressed his goal. Another approach

is to track how frequent a strategy is used by assuming that the most used

strategies are well appreciated by the users.

For example, consider the serendipitous rebalancing of Q results strategy.

The referred strategy perturbs the results order so that the user is also exposed

to an amount of neglected items. However, if the swap items are rarely visited by

the user, the mentioned strategy should be less frequently activated.

This way, the application is able to learn what the best strategies are and,

therefore, to adapt its behavior for the best user experience.

3.7. Chapter Summary

In this chapter, we describe a query orchestration process that permits the

application to approach different behaviors for a given submitted query. A query

orchestration process can be very useful when the normal execution of the query

does not produce sufficient information to support the user’s goals.

We present three strategies to capture the selected serendipity patterns

with the query orchestration process: Serendipitous response for a Query,

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

33

Serendipitous alternatives for a Query and Serendipitous rebalancing of a Query

results.

We present also a discussion about how to manage the level of serendipity

introduced in the results.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

4
Serendipity Patterns

4.1.Introduction

This chapter discusses how to capture the serendipity patterns of Chapter 2 in

the context of Linked Data search. It also provides a case study scenario with the

purpose of illustrating the use of the serendipity patterns. The scenario is based

on the DBpedia dataset and focuses on the music domain. In this scenario,

serendipity search can increase the user satisfaction by providing interesting and

non-obvious artists or songs.

Inspired by the Information Encounter Experience (Erdelez 1999)

discussed in Chapter 2, we characterize serendipitous search defining the

encounterer as the user who submits the query, the environment as a query

environment with which the user interacts, while the information encountered is

the results list. We distinguish between a regular component retrieving the

original results using the classical sorting, and a serendipitous component

providing surprising results.

The main objective of this chapter is to formalize a set of serendipity

patterns in order to: (1) facilitate the user in achieving his goal by exposing him to

a more diverse set of information; (2) explore information discovery capabilities of

the environment; (3) provide the user with not only problem-related but also

interest-related information.

Since serendipity patterns can be applied in different phases of query

execution, we formalize the serendipity patterns according to the query

orchestration process of Chapter 3.

To capture the analogy, the surprising observation, the latent goal and the

inversion patterns, we resort to the Serendipitous response for a query strategy.

In other words, the process explores the results of the user’s query to invoke

secondary queries with the recently acquired information.

To capture the wrong hypothesis pattern, we approach the Serendipitous

alternatives for a query strategy, according to which the process analyzes the

submitted query and is able to generate alternative queries. This allows the user

to retarget his search based on an alternative version of his original query.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

35

Finally, to capture the disturbance pattern, we apply the Serendipitous

rebalancing of a query results strategy, whereby the process is able to change

the order of the result list in order to expose items that the user would normally

neglect.

In order to illustrate the serendipity patterns, we resume the UQ1 query.

This way, all examples are based on English rock guitarists category results.

UQ1 Entities from English rock guitarist category
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX dbc: <http://dbpedia.org/resource/Category:>

SELECT distinct ?entity WHERE{

?entity dct:subject dbc:English_rock_guitarists.

}

4.2. Capturing the Analogy Pattern

To capture analogy, we first introduce a new property, sol:analogousTo, to be

expressed by triples of the form (s,sol:analogousTo,o), which intuitively indicate

that entities s and o are analogous.

More precisely, let Q be a query submitted to a dataset Dk and Ti be a

result of Q for Dk. If e is an entity that occurs in Ti, then the search process might

look for or compute a triple of the form (e,analogousTo,o) in Dk and include the

triple in the serendipitous component corresponding to Ti.

We propose to compute analogousTo using a family of similarity functions

adopting the same strategy used to compute the sameAs property, except that

the properties to be compared would be chosen according to some set of criteria

appropriate to capture analogy.

One approach is to define a query context that reflects the interests of a

group of users. For example, consider the entities “John Lennon” and “Roy

Harper”, both belonging to the English rock guitarists category and both

reportedly influenced by the American novelist and poet “Jack Kerouac”, a

pioneer of the Beat Generation; indeed, “John Lennon” and “Roy Harper” are

both linked to “Jack Kerouac” through the dbo:influenced property of the

DBpedia property ontology. From this point of view, “John Lennon” and “Roy

Harper” are understood to be analogous, in that, as noted, they belong to the

same category and are connected to the same entity with respect to the

dbo:influenced property. For this scenario, the search process must fill in the

Analogy Query Template 1, AQT1, with information acquired from the user's

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

36

query. To do so, the search process executes a valid SPARQL query by replacing

the [result-uri] field with the results of the UQ1 query:

AQT1 Using influenced property to find analogous entities
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX sol: <http://soltool.com/>

CONSTRUCT {[result-uri] sol:analogousTo ?analogousEntity} WHERE {

?auxInfluence dbo:influenced ?analogousEntity;
 dbo:influenced [result-uri].
[result-uri] dct:subject ?auxCategory.
?analogousEntity dct:subject ?auxCategory.
FILTER (?analogousEntity != [result-uri])

}

We also propose a different query context to take advantage of the

DBpedia category hierarchy. For example, we might move up in the category

hierarchy from English rock guitarists to English guitarists and then down to

English bass guitarists, a narrower category. Thus, we would conclude that an

entity of English rock guitarists is analogous to an entity of English bass guitarists

with respect to the English guitarists category. Similarly to AQT1, the search

process must fill in the Analogy Query Template 2, AQT2, with information

acquired from the user's query in order to capture the analogy pattern. One

characteristic of this template is that the subquery selects, among the categories

of the UQ1 results, that with the lowest number of entities linked to it in order to

find a more specific category subset. To achieve this goal, AQT2 uses the

skos:broader property from SKOS ontology, a standard vocabulary for

organization systems:

AQT2 Using category hierarchy to find analogous entities
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX sol: <http://soltool.com/>

CONSTRUCT {[result-uri] sol:analogousTo ?analogousEntity} WHERE {

?analogousEntity dct:subject ?category.
?auxCategory skos:broader ?superCategory.
?category skos:broader ?superCategory.
{

SELECT ?auxCategory (count(?categoryClient))
WHERE {

[result-uri] dct:subject ?auxCategory.
?categoryClient dct:subject ?auxCategory.

}
GROUP BY ?auxCategory
ORDER BY (count(?categoryClient))
LIMIT 1

}
FILTER (?analogousEntity != [result-uri])

}
LIMIT 2

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

37

A variation of AQT2 is the Analogy Query Template 3, AQT3, that randomly

selects categories of the [result-uri] field:

AQT3 Using category hierarchy to find analogous entities
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX sol: <http://soltool.com/>

CONSTRUCT {[result-uri] sol:analogousTo ?analogousEntity} WHERE {

?analogousEntity dct:subject ?category.
?auxCategory skos:broader ?superCategory.
?category skos:broader ?superCategory.
{
SELECT ?auxCategory
WHERE {

[result-uri] dct:subject ?auxCategory.
}
LIMIT 1 OFFSET RAND()

}
FILTER (?analogousEntity != [result-uri])

}
LIMIT 2

Note that AQT1 relies on a vocabulary specific to the arts domain, the

influenced property, while AQT2 and AQT3 use only Linked Data standard

vocabularies and, therefore, they can be adopted for several domains.

Finally, we observe that this approach uses the familiar notion of similarity

functions, and thus, it may take advantage of tools, such as Limes (Ngomo &

Auer 2011) and Silk (Isele et al. 2010) to offline precompute analogousTo triples,

and add these triples to a dataset.

4.3. Capturing the Surprising Observation Pattern

To capture the surprising observation pattern, we suggest to reinterpret the

rdfs:seeAlso property in such a way that a triple of the form (s,rdfs:seeAlso,o)

would intuitively indicate that any user interested in entity s might also be

interested in entity o. Indeed, the rdfs:seeAlso property is commonly used as

a wildcard to relate contents with loose connections.

In DBpedia, for example, there is a rdfs:seeAlso property linking

“George Harrison” to “Apple Records”. This link may be motivated by an analysis

of the connection between “George Harrison” and “The Beatles” and the

connection between “The Beatles” and the “Apple Records”. For this scenario,

the search process must fill in the Surprising Observation Query Template 1,

SOQT1, with information from the UQ1 results:

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

38

SOQT1 Using seeAlso property to find surprising observation
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

CONSTRUCT {[result-uri] rdfs:seeAlso ?surprise} WHERE {

[result-uri] rdfs:seeAlso ?surprise.
}

Another surprising observation is the inclusion of other members of the

same band of a given musical artist. This can be captured with the

associatedBand property, as described in the Surprising Observation Query

Template 2, SOQT2:

SOQT2 Using associatedBand property to find surprising observation
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbo: <http://dbpedia.org/ontology/>

CONSTRUCT {[result-uri] rdfs:seeAlso ?surprise} WHERE {

[result-uri] dbo:associatedBand ?band.
?surprise dbo:associatedBand ?band.

}

Computing the rdfs:seeAlso property is a difficult issue though. A simple

solution would be to define (s,rdfs:seeAlso,o) as (s,owl:sameAs,o), provided that

entity s is defined in the dataset the query refers to and that o is an entity defined

in another dataset listed in the query environment, but coming from a different

domain. For example, consider the case of a dataset Dk about the music domain,

which contains information, such as musical artists, their albums and their songs.

Suppose that Q is a query submitted to Dk and Ti is a result of Q over Dk. If e is a

singer that occurs in Ti, then the search process might look for a triple of the form

(e,owl:sameAs,o) in Dk, where o is an entity defined in Dj, with j ¹ k, and include

(e,owl:sameAs,o) in the serendipitous component corresponding to Ti. If Dj is a

dataset about actors, the user may be told that singer e is also an actor, like

“David Bowie” or “Jared Leto”.

The example above illustrates how the surprising observation pattern can

integrate different views about the same object. By gathering the combination of

all social activities and different roles of a person, we are able to acquire a more

complete version of his biography or his “social identity” (Goffman 1963).

According to this strategy, using the query UQ1, the surprising observation

pattern suggests the “David Bowie” entity of New York Times dataset3 for users

who search for “David Bowie” in DBpedia, if the New York Times dataset belongs

to the query environment. The Surprising Observation Query Template 3,

SOQT3, depicts the template to capture this occurrence:

3 http://data.nytimes.com/80300354872775959333

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

39

SOQT3 Using sameAs property to find surprising observation
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

CONSTRUCT {[result-uri] rdfs:seeAlso ?surprise} WHERE {

[result-uri] owl:sameAs ?surprise.
}

4.4. Capturing the Latent Goals Pattern

In other circumstances, we can adopt a different strategy to capture surprising

observations. Instead of providing surprising observations related to the goal of

the current query, the application can explore how the current query results

address other latent goals (De Bruijn & Spence 2008).

Since every submitted query represents the user current goals, we use

previously submitted queries to compose latent goals, i.e., goals that are not

explicitly addressed in the current query. Therefore, new queries may be directed

to explore whatever is eventually found related to other recent queries.

By supporting latent goals, the procedure enables the discovery of

problem-related information (Erdelez 1999) as the acquired data addresses a

different goal than the expressed in the current query. In other words, the latent

goals patterns objective is to discover how the current query results relate to

previously submitted queries and use that to obtain further information.

More precisely, let Q be a query submitted to a dataset Dk and P be a

recent submitted query for Dk. A latent goal is supported if there is a triple (x,y,z)

or triple (z,y,x), where x is a result of Q for Dk and z is a result of P for Dk.

Consider the next example. Apparently, there is nothing in common

between such disparate domains as "guitarists" and "salads". And yet a user

visiting Quebec, who first asks about "Quebec" and "guitarists", and later, when

planning for dinner, asks about "restaurants" and "salads", may be told – in

unexpected detail – that one restaurant features "good salads, nice live guitarist".

In this way, the serendipitous component can be made more responsive to the

user’s interests and goals.

For this scenario, the search process must fill in the Latent Goal Query

Template 1, LGQT1, with information acquired from the user's query. To do so,

the search process executes a valid SPARQL query by replacing the [result-uri]

field with the results of the UQ1 query and [recent-query] with a recent query:

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

40

LGQT1 Using a recent query
PREFIX sol: <http://soltool.com/>

CONSTRUCT {[result-uri] sol:latentGoal ?surprise} WHERE {

{
[result-uri] ?p ?surprise.
filter(?surprise IN ([recent-query]))

}
UNION
{

?surprise ?p [result-uri].
filter(?surprise IN ([recent-query]))

}

}

Hence, the serendipitous component can be made more responsive to the

user’s interests and goals, either merely involved in a multiple-query session as

in the above example, or registered among the objectives of a daily agenda, or

more elaborately deduced from some user profile representation.

4.5.Capturing the Inversion Pattern

The inversion pattern describes the process of discovery where the insight is the

opposite of the initial intent. For this matter, the main objective is not to capture a

RDF triple (s,p,o) that asserts that there is a property p connecting entity s to

entity o, but rather the goal is to capture its opposite.

Under the closed-world assumption, implemented as negation as failure,

the absence of a RDF triple is understood that the assertion of that triple is false.

But, negation as failure does correspond to the intuition behind the inversion

pattern p. For example, p might be “cures”, whose inversion might be “causes” (a

disease), which is different from “not cures”.

Hence, to properly capture the inversion pattern, given a property p, we

would have to postulate that there is a property q such that q captures the

opposite of p. In other words, the underlying ontology would have to be rich

enough to have properties and their antonyms, which is not always the case.

There is a special case, though, worth exploring. Since we use the

owl:sameAs property to define a strategy for capturing the surprising

observation pattern, we propose to use the owl:differentFrom property in

such a way that a triple of the form (s, owl:differentFrom,o) indicates that entities

s and o are different, in spite of the initial intent (which is to find entities that

represent the same real-world object). In this sense, the owl:sameAs and the

owl:differentFrom properties are opposed to each other.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

41

In DBpedia, for example, there is a owl:differentFrom property linking

“Robbie Williams” to “Robin Williams”. For this scenario, the search process must

fill in the Inversion Query Template 1, IQT1, with information from the UQ1

results:

IQT1 Using differentFrom property to explore inversion
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

CONSTRUCT {[result-uri] owl:differentFrom ?inversionEntity } WHERE {

[result-uri] owl:differentFrom ?inversionEntity .
}

4.6. Capturing the Wrong Hypothesis Pattern

We adopt a completely different strategy to capture the wrong hypothesis pattern.

Very briefly, the suggested strategy allows the user to stop consuming the result

list obtained for a query Q, and restart the search process with a new query Q’

based on some entity observed in the serendipitous component of a result of Q.

That is, the user would retarget his search based on some entity the search

process may have passed in a serendipitous component. This pattern may be

quite useful when the user does not find enough information with his query but

does not know what else to search for.

The wrong hypothesis pattern relies on the category representation of

DBpedia to present alternative queries to the user. To do so, the search process

executes the user query and retrieves the three most popular categories of the

results i.e. the categories that appear most often in the results. With this

information, the search process builds an alternative query allowing the user to

restart the search process with a different perspective.

To reproduce this behavior, the search process must proceed in two steps.

First, it uses the Category Frequency Query Template 1, CFQT1, to get the three

categories with the largest number of entities linked to them. The search process

fills the template with two pieces of information from the user’s query string: the

output variable of the query string represented by the [var] field and the query

string itself represented by the [user-query] field:

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

42

CFQT1 Extracting the most used categories from the subquery
PREFIX dct: <http://purl.org/dc/terms/>

SELECT (COUNT(?s) AS ?counter) ?category WHERE {

?s dct:subject ?category.
FILTER (?s = [var])
{

[user-query]
}

}
GROUP BY ?category
ORDER BY DESC(?counter)
LIMIT 3 OFFSET 1

Second, the search process fills in the Wrong Hypothesis Query Template

1, WHQT1, with information acquired from the CFQT1 by replacing the

[categories-list] term with results of the previous query.

WHQT1 Building alternative query
PREFIX dct: <http://purl.org/dc/terms/>

SELECT ?entity WHERE {

{
SELECT ?entity WHERE {

?entity dct:subject ?catAux.
FILTER (?catAux IN ([categories-list]))

}
 }
 MINUS
 {

[user-query]
 }

}
LIMIT 100

For example, assume the search process receives UQ1. First, the search

process uses CFQT1, to discover that the three most frequent categories of UQ1

are: English rock guitarists, Living people and English male singers. Then, it

completes the WHQT1 template with the acquired information as depicted in the

example below.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

43

Example of alternative query to UQ1
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX dbc: <http://dbpedia.org/resource/Category:>

SELECT ?entity ?catAux WHERE {

{
SELECT ?entity WHERE {

?entity dct:subject ?catAux.
FILTER (?catAux IN (dbc:English_rock_guitarists,

dbc:Living_people, dbc:English_male_singers))
}

 }
 MINUS
 {

SELECT distinct ?entity WHERE{

?entity dct:subject dbc:English_rock_guitarists.

}
 }
}

4.7. Capturing the Disturbance Pattern

We also suggest to adopt a strategy based on the result list to capture the

disturbance pattern. This strategy perturbs the order of the result list obtained for

a query Q by randomly bringing results further down the result list to near the top

of the list. The user who issued query Q would therefore be exposed to results

that he would normally neglect, and consequently his perception of the query

result list would be changed.

This strategy stems from two motivations. First, if query Q returns a result

list ordered by any ranking criterion X, then the disturbance pattern has the ability

to smooth the impact of X. Second, if no ordering criterion is provided, the

dataset endpoint may use its own ordering, in other words, the query will highlight

results using a criterion that is not clear to the application or the user.

For example, consider that a user modifies the UQ1 so that the results are

ordered alphabetically. The disturbance pattern switches the position of “Adrian

Portas” and “Würzel”, both English rock guitarists.

4.8. Chapter Summary

In this chapter, we formalize strategies to capture serendipity patterns in the

context of Linked Data search for the music domain. For this domain, serendipity

search can increase the user satisfaction by providing interesting and non-

obvious artists or songs.

We present five serendipity patterns according to the query orchestration

process. To capture the analogy, the surprising observation, the latent goals and

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

44

the inversion patterns, we resort to Serendipitous response for a query strategy.

To capture the wrong hypothesis pattern, we apply the serendipitous alternatives

for a query strategy. Finally, to capture the disturbance pattern, we apply the

Serendipitous rebalancing of a query results strategy.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

5
SOL-Tool

5.1.Introduction

In order to validate the query orchestration process and to apply the

serendipitous patterns, we developed a Linked Data search tool, the Serendipity

Over Linked Data Search Tool – SOL-Tool. The SOL-Tool was developed in Java

with the Jena framework4, a well-stabilized framework for Linked Data query

processing and data manipulation, and Java Concurrent API5 to parallelize the

task of invoking remote datasets.

The SOL-Tool modular architecture is organized in a way that allows the

search process to: (1) isolate the logic task of displaying the results from the rest

of the search process; (2) permit not only users but also other applications to

consume the search process of the tool; (3) take actions before, during and after

the execution of the user’s query; (4) attach additional information to every item

of a query result; (5) address remote datasets independently; (6) enable the

different query strategies for different scenarios; and (7) parallelize the query

execution.

Figure 6 depicts the SOL-Tool architecture.

Figure 6: The SOL-Tool Architecture

4 https://jena.apache.org/
5 http://docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-

summary.html

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

46

To handle (1) and (2), the SOL-Tool Interface merely acts as the interface

of the search engine with the user or other application receiving a SPARQL query

and returning its results. This enables future versions of the SOL-Tool search

engine to be instantiated as a Web service for other applications. Then, the SOL-

Tool Interface starts the Dataset Orchestrators with a catalogue of datasets.

Motivated by (3), (4) and (5), the Dataset Orchestrator is responsible for

interacting with a single dataset and managing the acquired data. This way, the

application can address multiple dataset endpoints by merely creating multiple

instances of Dataset Orchestrators. Each Dataset Orchestrator works

independently with its isolated view of Query Executors, Query Builders and

Result Balancers.

The Dataset Orchestrator first uses the Basic Query Executor to process

the user's query and retrieves its results. The Basic Query Executor is just a

basic type of Query Executor that receives a SPARQL query, processes it and

returns its results.

For every result of the user's query, the Dataset Orchestrator invokes

Query Executors to process secondary queries and locate content that is

serendipitously related to the respective result. The Dataset Orchestrator then

delegates the task of querying its dataset to the Query Executor.

Motivated by (5) and (6), the Query Executor defines how to query the

dataset. It encapsulates the logic of the query executed, in other words, it

describes the serendipity patterns in terms of a SPARQL query that can be

submitted to the dataset. To adapt the search process to different scenarios and

behaviors, the SOL-Tool provides different Query Executors as described in

Chapter 4, and also provides an interface to build new ones. Secondary tasks of

the Query Executor include parsing the results and handling eventual network

exceptions.

It is worth noting that the Dataset Orchestrator encompasses the strategy

of the search process while the Query Executor retains its logic. Thus, a Dataset

Orchestrator acts as a façade for encapsulating several Query Executors to

address the same dataset with different approaches. This design allows the

application to adopt different approaches and control the level of effort to produce

serendipity in the results.

Then, the Dataset Orchestrator invokes Query Builders to create alternative

query suggestions to the user’s query. The Query Builders receive a query string

and return a different query string in order to enable a wrong hypothesis pattern

experience. They encapsulate the logic of the query transformation and can be

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

47

invoked before, during or after the Basic Query Executor is executed. Like the

Query Executors, the Query Builders have access to remote datasets, thus also

handling (5).The current version of SOL-Tool presents only one Query Builder as

described in Chapter 4.

Finally, the Dataset Orchestrator may also invoke a Result Balancer to

reorder the obtained results. The Result Balancer encapsulates the logic to

reorder the results. The current version of SOL-Tool only provides an interface for

the construction of new Result Balancers.

5.2. Concurrent Dataset Request

As most of the effort spent by the application relies on invoking remote dataset

endpoints, a critical factor since early implementations is the impact of latency in

overall performance, i.e., the time that the application waits for remote servers to

respond. To address this problem, the application resorts to the Java concurrent

API to invoke SPARQL requests concurrently.

To reproduce this behavior, every Query Executor must implement a call

method that is responsible for executing the SPARQL request and returning the

query results. Therefore, the Dataset Orchestrator invokes the Query Executors

asynchronously and aggregates the results that come from the remote dataset

endpoint. The Dataset Orchestrator incorporates a MapReduce strategy

(Leskovec et al. 2014) to combine the results related to an entity from many

Query Executors as depicted in Figure 7. For example, assume that the user

query returns an entity e. The Dataset Orchestrator will invoke Query Executors

to find content that is serendipitously related to e. All data content found are

grouped together using the URI from e.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

48

Figure 7: MapReduce Strategy

With this configuration, the SOL-Tool application executes a basic search

in less than 6% of the time of the single thread version. For comparison, UQ1

was executed 10 times using the single thread and the multi-thread version of

SOL-Tool. The average time of the single thread is 144 seconds, while the

average time of the multi-thread (with a pool of 50 threads) is 7.4 seconds.

5.3. Evaluation

From the recommender systems literature, a common approach to evaluate

quality is to measure the accuracy of the results. However, as argued in

(Murakami et al. 2007), other metrics should be considered since very accurate

results may lead the user to a bubble where he is only exposed to restricted and

obvious information. To overcome this problem, we adopt unexpectedness to

measure the serendipity of the results.

In (Murakami et al. 2007) the unexpectedness of the results is evaluated

by comparing the acquired results to a more primitive baseline system. However,

as Kaminskas and Bridge (2014) point out, this approach has several drawbacks:

for example, the evaluation is sensitive to the baseline system. They then

propose a different approach for measuring unexpectedness based on the

dissimilarity of content labels. It uses the complement of the Jaccard similarity to

compute the distance between two items. Therefore, the unexpectedness of an

item is computed as the minimum distance of this item to previously seen items.

The experiment in this section uses the content-based metric (Kaminskas

and Bridge 2014) to evaluate the level of unexpectedness of the serendipitous

component of the SOL-Tool, compared to its regular component. The content-

based metric (Kaminskas and Bridge 2014) is depicted as follows:

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

49

𝑑𝑖𝑠𝑡(𝑖, 𝑗) = 1 −
𝐿. ∩ 𝐿0
𝐿. ∪ 𝐿0

where Li and Lj are set of labels describing items i and j.

In order to select the item labels properly, the experiment adopts the Type

Query Template, TQT1, that extracts the types associated with a given [entity]

entity.

TQT1 Extracting the type of an entity
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>

SELECT distinct ?type WHERE{

[entity] rdf:type ?type.
}

We chose to evaluate the level of unexpectedness according to the

Kaminskas and Bridge (2014) metric because it indicates how the two elements

differ in context of the provided labels. If a user is introduced to elements with a

high level of unexpectedness he is likely to explore new frontiers of the dataset

with information that he would not be exposed in his original query.

This way, a suggestion with 0 score of unexpectedness represents an item

with the same set of labels of the base item and, subsequently, closer to the base

item definition. On the other hand, a suggestion with score of unexpectedness

equal to 1 represents an item without any label in common with the base item.

Due to the size of DBpedia, we adopted the same strategy as (Passant

2010a) and limited the scope of the evaluation by restricting the user’s query to

retrieve entities of the type MusicalArtist and Band from DBpedia ontology, which

have at the time of this writing 50,978 and 33,613 entities, respectively. The User

Query 2, UQ2, selects entities of the type MusicalArtist.

UQ2 Entities from MusicalArtist type
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT distinct ?subject WHERE{

?subject rdf:type dbo:MusicalArtist.
}

The User Query 3, UQ3, selects entities of the type Band and is defined

similarly to UQ2.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

50

UQ3 Entities from Band type
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT distinct ?subject WHERE{

?subject rdf:type dbo:Band.
}

Given the automated nature of the experiment, the Latent Goals

QueryExecutor is not included in the serendipitous search of the above queries.

The motivation is that the latent goals pattern relies on information provided by

user profiles. Our major concern is that any profile specification could bias the

experimental results.

Table 4 depicts the average unexpectedness of the serendipity component

of UQ2 and UQ3 with SOL-Tool and SOL-Tool-1, a variation of SOL-Tool that

limits the number of results to one entity per Query Executor. This customization

is possible due to the parameterization of the limit value of the Query Executor

templates.

Table 4: Experimental results.

Query Unexpectedness
average

Query Unexpectedness
average

UQ2 0.90 UQ2 with limited Query Executors 0.80

UQ3 0.88 UQ3 with limited Query Executors 0.81

The overall result of Table 4 indicates that the SOL-Tool performs well

when proving unexpected results for the selected inputs. This outcome illustrates

the fact that the application adopts different strategies to present serendipitous

content.

A concern of the metric (Kaminskas and Bridge 2014) is the influence of

very dissimilar items on unexpectedness computation. This issue is partially

addressed by the SOL-Tool application because each serendipity pattern

explores how entities are related. For example, consider the entity that

represents the “Juli” band retrieved by executing UQ3. The execution of TQT1

extracts 32 type labels of the “Juli” entity and 320 type labels of the entities

encountered with the serendipitous search of UQ3, but from those 320 labels,

there are 27 type labels that also belong to “Juli”. The unexpected score of this

item is 0.93, in spite of finding 85% of “Juli” type labels.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

51

An additional interesting information of Table 4 is the loss of

unexpectedness when limiting the number of results per Query Executor. The

configuration of these parameters may be used to leverage the tradeoff between

the quality of results and the effort spent in the search. This matter can be

addressed with a simulated annealing strategy and represents an interesting

topic for future study.

5.4. Lessons Learned

The overall score of 90% of unexpectedness acquired in the experiments

indicates that SOL-Tool approaches well the problem of locating serendipitous

content for the music domain. Nevertheless, other factors ought to be considered

in future experiments.

Particularly, a different perspective to be investigate in SOL-Tool is the

impact of the Latent Goals QueryExecutor in the application overall performance

since the component has not been considered in the reported experiment. We

are optimistic that in an experiment that tracks user’s recent query history the

Latent Goals Query Executor may enable the discovery of more serendipitous

connections.

Additionally, minor improvements can be conducted in the architecture.

The SOL-Tool architecture was designed to support extensibility by simply

creating new instances of Query Executors, Query Builders and Result

Balancers. However, it is worth noticing that the performance may be affected as

the number of Query Executors grows significantly. The explanation for this effect

is that the number of Query Executors determines how many secondary queries

are to be invocated. Although the Map Reduce strategy mitigates the latency

issue, the number of dataset requests increases with the number of Query

Executors included in the search process.

 Considering this scenario, there are two opportunities for enhancement in

SOL-Tool architecture. A first alternative is to adapt the SOL-Tool application to

an IaaS cloud environment (Mell et al. 2011), such as Azure6 or Amazon Elastic

cloud7. In such environments, the data processing tasks can be distributed on a

wider scale.

 A second alternative is to develop a new component module to analyze

the dataset a priori and reason whether each Query Executor should be invoked

6 https://azure.microsoft.com/
7 https://aws.amazon.com/pt/ec2/

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

52

or not. With that, the work load would be optimized because the processing of a

query would not invoke Query Executors that would not be useful for the

respective dataset. Examples of such occurrences are Query Executors that deal

with entities or vocabularies not presented in the dataset.

5.5. Chapter Summary

The SOL-Tool was developed with the objective of validating the query

orchestration process by combining different strategies to locate Linked Data

content. The processing unites unexpectedness and relatedness and the

experimental results present a promising score of 90% of unexpectedness for

real-world scenarios in the music domain.

The SOL-Tool architecture encompasses five component types: (1) Query

Executors that are responsible for processing secondary queries and discovering

additional information about a given entity; (2) Query Builders that create

alternative query suggestions to the user; (3) Result Balancer that is responsible

for reordering the obtained results; (4) Dataset Orchestrator that coordinates how

the first three components interact with a given dataset; (5) SOL-Tool Interface

that acts as the interface of the search engine with the user by receiving a

SPARQL query and returning its results.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

6
A Serendipity Movie Test Dataset

6.1.Introduction

The overall approach adopted by search applications is to locate resources that

are strongly related to the user’s needs. In other words, the main concern is to

maximize how accurate the results are for a given input. However, studies

(Murakami et al. 2007, Ge et al. 2010) argue that accuracy alone can lead the

user into an information bubble where the user is only exposed to information of a

certain niche or, even worse, to a kind of information he already knows. These

studies suggest that other metrics, such as serendipity, ought to be considered in

order to analyze the user satisfaction.

Serendipity has been used in recommender systems (Abbassi et al. 2009,

Adamopoulos et al. 2011, Stankovic et al. 2011, Zhang et al. 2012, Bordino et al.

2013) to provide unexpected items among the search results. As argued in

(Toms 2009), serendipity provides a holistic and ecological approach to

information acquisition in information systems.

The serendipity relatedness problem consists of finding entities that are

serendipitously, i.e., unexpectedly, related to a source entity. Inspired by studies

that embody serendipity among the recommendation process (Ziegler et al. 2005,

Abbassi et al. 2009, Zhang et al. 2012), we propose the adoption of a global

classifier function that divides the universe of items in partitions according to the

genre feature. Thereafter, a pair of items is understood to be serendipitously

related if they belong to different partitions and yet share a reasonable amount of

connections or common features, according to similarity criteria.

In spite of the studies that address the serendipity relatedness problem, at

the time of this writing there are no benchmarks to measure and compare the

effectiveness of different approaches. As Iaquinta et al. (2008) argue, to

conceptualize, analyze and implement serendipity turns out to be a difficult task

due to its subjective nature.

Therefore, the main contribution of this chapter is a dataset created to

support the evaluation of approaches that address the serendipity relatedness

problem in the movies domain, which we refer to as the Serendipity Movie Test

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

54

Dataset (Eichler et al. 2018). Nevertheless, the Serendipity Movie Test Dataset

can also be used in parallel with user feedback experiments in order to provide a

complementary view of analyzed approach.

As described in this chapter, the Serendipity Movie Test Dataset contains

entities and connection paths extracted from the LOD cloud that pertain to the

movies domain.

A second contribution of this chapter is the discussion and description of

the steps and design decisions involved in the construction of the Serendipity

Movie Test Dataset. The first step consisted in the selection of a set of entity

pairs from the movies domain. The second step referred to the extraction of a set

of connection paths, for each entity pair. The final step was to rank the pairs,

based on information extracted from DBpedia and LinkedMDB8, and to select the

top-k ones.

The proposed dataset creation process defines the necessary steps for

building a dataset that exploits Linked Data resources. The steps are structured

and can be extended to capture different particularities of the retrieved data, the

given domain or the benchmark goal. For example, the data is structured so that

the same Linked Data resources can be used to build different benchmarks by

simply adopting distinct pair ranking algorithms.

It is worth noticing that, although the Serendipity Movie Test Dataset

addresses the serendipity relatedness problem in the movies domain, the overall

strategy described in this paper can be replicated in different domains or even

combine different domains in the creation process. For instance, to create a

serendipity music dataset, one may implement the same steps as Serendipity

Movie Test Dataset and simply adapt a few steps, such as the Linked Data

dataset source selection.

6.2. A Generic Path Finding and Ranking Process

In order to address the path finding problem, we propose the definition of ignored

list, connections and connection paths.

An ignored list is a list of properties that should not be considered in the

path finding algorithm. The motivation of this requirement is because there may

be a set of properties that, if considered in the path finding algorithm, will produce

noise in the paths found.

8 http://www.linkedmdb.org/

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

55

Let G be an RDF graph and Z be an ignored list. A connection in G

between entities e1 and e2 is a triple (e1,p,e2) or a triple (e2,p,e1) in G, where p ∉

Z. The notion of connection is important because the RDF data model induces a

directed graph, while for this problem it is only necessary to know if two entities

are connected, regardless of the role they play in the triple.

A connection path CP(e1,en) in G between entities e1 and en is a sequence

of entities (e1,e2,e3, …, en-2,en-1,en), where n is the path length, ei is unique, for i Î

[1,n] and there is a connection between entities ei and ei+1 in G.

There are two key points in the construction of the dataset. First, we apply

a path finding algorithm to discover the connection paths between two resources.

Second, we apply a pair ranking algorithm in order to rank entity pairs according

to the connection paths they share.

The path finding algorithm receives an RDF graph G, two entities, esource

and etarget and a maximum distance k. It implements a breadth first search (BFS)

to discover a set of connection paths CP(esource , etarget) in G. The algorithm starts

a BFS with entity esource. Subpaths are generated by expanding the search to

entities that share a connection with esource; this process goes on recursively until

k is surpassed or a connection path is found. Finally, a connection path is found if

the entity etarget is reached. The output of the algorithm is a set of connection

paths CP(esource , etarget) starting from esource and ending in etarget.

The pair ranking algorithm receives a list of entity pairs (esource,ei), where I Î

[1,n], and i ≠ source. For each i, it analyses the connection paths that the entity

pair esource and ei have and computes a scorei according to the Katz index (Katz

1953). The output of the algorithm is a ranked list of entity pairs, according to the

computed score.

6.3. Constructing the Serendipity Movie Test DataSet

6.3.1. Overview of the Construction Process

The construction of a Serendipity Test Dataset in general involves seven major

steps: (1) how to select relevant entity pairs for a given domain; (2) which Linked

Data datasets present relevant data to support the domain; (3) how to map those

entities to Linked Data resources; (4) how to retrieve data about an entity; (5)

how to discover connection paths for the entity pairs selected; (6) how to rank the

entity pairs; and (7) how to present the relevant acquired pairs.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

56

The overall strategy adopted for the creation of such datasets is

summarized in what follows and detailed in the next sections for the movies

domain.

The class Entity encompasses the basic information needed to describe the

entities that the dataset is about. In the case of the movies domain, each entity

represents a movie with its title, year and genre.

The entity data is processed in order to locate Linked Data resources that

represent that entity in a Linked Data dataset; this task addresses step (3). If

Linked Data resources are found and a LD Resource instance is created, a

routine queries Linked Data datasets in order to retrieve a Linked Data graph

containing information about this resource, achieving step (4).

The class Pair associates two instances of LD Resource, one representing

a source entity and the second representing a possible candidate for serendipity

suggestion. The class Pair holds only the connection paths that connect the two

resources, therefore addressing step (5). Then, each pair receives a score based

on its connection paths, as in step (6). Finally, the top-k entities with higher

scores are stored as the recommendation for the source entity, addressing step

(7).

Figure 8 depicts the data model that describes the movie domain in the

Serendipity Movie Test Dataset.

Figure 8: Data Model of the dataset Construction Process

6.3.2. Selecting Entity Pairs

We focused on popular movies in the movies domain. Since popularity

represents a relevance criterion, we decided to adopt Google Search expertise

for this matter. Additionally, it is important that the dataset construction retrieves a

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

57

list of movies divided by genre, as the dataset partition plays a decisive role in

our definition of serendipity relatedness.

First, we submitted the query “most popular movie genres” to Google

Search. The result of the query is a list of 51 movie genres ordered by popularity.

Then, for the 15 first movie genres, we submitted the query “genre +

movies”, such as “comedy movies”. Among the results of this query is the data

(title and release year) of the 51 most relevant movies for that genre, according to

Google Search. Figure 9 depicts an example of movie genre search. We only

considered the 15 first movie genres because many genres from the bottom of

the list represent sub-genres of the previous ones. For example, “Spaghetti

western” is a sub-genre of the “Western” genre.

Figure 9: Google Search example

Regarding the adoption of subgenres, we decided not to consider

subgenres because we believe that they could introduce bias to the final results.

For example, it is likely that a subgenre movie presents a good score when linked

to a master genre movie. One way to prevent such occurrences is to annotate the

relation between genres, but we avoided this decision in order to not interfere

with the initial input.

With this data, we built a list of relevant movies grouped by genre and

concluded the first step of the construction of the dataset. The product of this step

is available in the BaseList folder of the dataset (Eichler et al. 2018).

6.3.3. Linked Data URI Mapping

Now that we have data that permits us to identify a movie, title and release year,

a second challenge is how to map those objects to linked data resources, in other

words, to discover a URI that represents the movie in a linked data dataset. Since

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

58

we are addressing the movies domain, we decided to use DBpedia and

LinkedMDB as data sources for searching movies entities.

DBpedia was chosen because it is one of the largest linked data datasets

and it is also one of the most used in linked data experiments (Volz et al. 2009,

Passant 2010a, Passant 2010b, Stankovic et al. 2011, Marie et al. 2013, Piccioli

et al. 2014), at the time of this writing. LinkedMDB was chosen because it

presents specific knowledge about the movies domain and it is also well explored

in academic experiments (Volz et al. 2009).

Since DBpedia and LinkedMDB present different particularities, we resort to

different strategies for URI searching with each dataset.

As DBpedia works with human readable URIs, an analysis was made and it

was identified that for a movie with the title MOVIETITLE and release year

MOVIEYEAR, the most used patterns for a movie URI are:

• http://dbpedia.org/resource/MOVIETITLE_(MOVIEYEAR_film)

• http://dbpedia.org/resource/MOVIETITLE_(film)

• http://dbpedia.org/resource/MOVIETITLE

Then, the procedure to locate a movie entity URI in DBpedia is to try the

above URI patterns from the most restrictive to the least restrictive and check if it

presents a threshold number of triples in the DBpedia dataset.

Additionally, if a movie entity URI is found, a second check must be

performed. If the above-mentioned procedure finds a URI movieURI that appears

in a triple (movieURI,dbo:wikiPageRedirects,anotherURI), then anotherURI will

be considered as the valid URI for that movie. The reason for this analysis

decision is that the wikiPageRedirects property from DBpedia ontology

namespace is used for disambiguation and describes cases in which the object of

the triple represents a more complete version of the subject of the triple.

This strategy enabled the procedure to locate 749 movie URIs in DBpedia

from the initial set of 765 movies of our movie list.

The same URI patterns are not applicable to the LinkedMDB dataset, since

it does not deal with human readable URIs. Therefore, we resort to a different

strategy for the LinkedMDB dataset. To discover the LinkedMDB URI for a movie

with title MOVIETITLE and release year MOVIEYEAR, the procedure queries the

LinkedMDB endpoint through the SPARQL query:

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

59

LinkedMDB URI Finder
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dct: <http://purl.org/dc/terms/>

SELECT ?movieURI where {

?movieURI rdfs:label MOVIETITLE .
?movieURI dct:date ?date .
FILTER regex(?date, "^MOVIEYEAR") .

}

The above query uses the label property from RDF-Schema (Brickley et al.

2014) namespace to select entities that match the movie title, while the date

property from Dublin Core (Weibel et al. 1998) namespace is used with filter

operator to gather entities with the given release year. Naturally, if the release

year of the movie is unknown, the third and fourth lines are removed from the

query.

With this strategy, the procedure was able to locate 510 movie URIs in

LinkedMDB from the initial set of 765 movies of our movie list.

It is noteworthy that the second strategy represents a more general

strategy for URI finding since it takes advantage of not only RDF structure but

also Linked Data popular vocabularies. In fact, the second strategy could have

been used for DBpedia that also represents movie titles with the label property

but does not present date information in triples.

With the acquired data, we augment our movie list with DBpedia and

LinkedMDB URIs for each movie and conclude the second step of the

construction of the dataset (Eichler et al. 2018). Movies whose URIs could not be

found are discarded for the following steps. The product of this step is available in

the URIMapping folder of the dataset.

6.3.4. Retrieving Entity Data

There are basically two options for publishing data on the Web: through a dump

file that is a serialized version of the dataset or through a SPARQL endpoint that

is a service that returns data on-the-fly. We chose to retrieve data through the

second option as it provides an updated version of the selected data.

Nevertheless, it is worth noticing that depending on the situation a dump file may

be used in this step as well. Server latency, data quality and availability are some

of the factors that can affect this decision.

In order to retrieve data about movies, the dataset construction process

accesses the LinkedMDB SPARQL endpoint performing a crawling approach.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

60

This approach executes a BFS against the LinkedMDB endpoint in a manner

similar to that described in the Path Finding algorithm. To reproduce this behavior

with a SPARQL endpoint, the expansion step is translated into the SPARQL

queries below, which capture the entities that are connected to a given

[baseEntity]. Therefore, the procedure collects all triples that describe entities that

are closer to a base entity. For the goal of this step, only entities that present a

maximum distance of two to the source entity are considered.

BFS Expansion step
CONSTRUCT {[baseEntity] ?p ?connectedEntity } where {

[baseEntity] ?p ?connectedEntity .

}

CONSTRUCT { ?connectedEntity ?p [baseEntity] } where {

?connectedEntity ?p [baseEntity] .

}

This way, the dataset construction retrieves a data graph containing the set

of triples that best describes each entity of our movie list and is located in the

DataGraph folder of the dataset (Eichler et al. 2018).

6.3.5. Discovering Connection Paths

In order to extract the connection paths between two entities, the procedure joins

the data graph of the two entities and executes the Path Finding algorithm with

the aggregated data graph.

There are three design assumptions that drive the path discovery process.

First, the procedure does not consider triples whose object is a literal due to the

obvious fact that it cannot lead the path towards the target entity. Second, the

procedure does not consider triples of the form (s,rdf:type,o) that, through the

type property from the RDF namespace, specifies that entity s is an entity of

class o. The motivation is that, in a specific domain, such as movies or music, a

relevant fraction of the population is attached to a single class, like the Movie

class. Therefore, a Movie class would establish a connection path between any

pair of movies and could influence results of the Path Finding algorithm. Third,

the algorithm assumes that the maximum length that a connection path should

have is 3, because, as we loosen this boundary, the number of connection paths

with length 4 start to dominate the total of connection paths found.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

61

Other less important assumptions were also made for the movies domain.

The Path Finding algorithm ignores triples that use the country, language and

genre properties from the LinkedMDB namespace. The first two properties are

not considered because, similarly to the rdfs:type property, they do not present a

reasonable diversity of values since, in the dataset, only two different countries

were assigned to the movies and many movies are not assigned to any country.

In other words, the two properties do not add relevance to the dataset. On the

other hand, the genre property is ignored because it induces the exact effect that

the Serendipity Movie Test Dataset aims to avoid i.e. to connect entities of the

same genre.

Note that the fundamental point of our approach for the serendipity

relatedness problem is to select pairs of entities from different genres. Therefore,

this step compares a movie with every other movie that belongs to a different

cinematographic genre. Hence, each movie from a genre different from that of

the source movie is a possible candidate for a serendipitous suggestion.

Thus, each movie will have an associated list of possible candidates for

serendipity i.e. the list of movies from different genres. The algorithm takes a

movie M and creates pairs (M,M’) such that M’ is a movie that is a candidate to

be considered as serendipitously related to M. Thus, each pair is in turn

associated with the connection paths extracted in this step. Pairs of movies

whose connection paths could not be found are discarded for the following steps.

The product of this step is available in the Pair folder of the dataset kept at

FigShare (Eichler et al. 2018).

One may notice that the data retrieval and the path discovery steps could

be combined in a single step. There are two justifications for keeping them

separate. The first motivation is a matter of performance. If entity data is going to

be used in the analysis of several entity pairs, it is convenient to store this data

and reuse it as needed. The second motivation is because the Serendipity Movie

Test Dataset is designed to support extensibility. By decoupling data retrieval

from path discovery, the dataset can be used in the future for the creation of

other benchmarks. For instance, one may take advantage of the first three steps

and build a new benchmark simply by analyzing the retrieved data from a

different perspective, such as similarity.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

62

6.3.6. Ranking Entity Pairs

For each entity, we ranked the entity pairs that involve the entity and a set of

candidate entities using the connection paths between the entities in the pair. The

entity pairs ranking process is conducted as described in the Pair Ranking

algorithm. The procedure first computes the score of each connection path. Then,

it sums the scores of all connection paths of a pair. Finally, the procedure orders

the entity pair list according to the computed scores. This way, pairs at the top of

the list represent entities that are more serendipitously related.

The score is computed according to the semantic connectivity score (SCS)

(NUNES et al., 2014), a variation of the Katz index (Katz 1953). SCS is defined

as:

𝑆𝐶𝑆(𝑠, 𝑡) =5 𝛽7 ∗ 9𝐿〈7〉9
<

7=>

where |L<l>| is the number of connection paths from s to t of length l and k is the

maximum distance considered between s and t. The damping factor β is

responsible for exponentially penalizing longer paths. In order to privilege the

shorter connection paths, we choose a distribution of weights of β as depicted in

Table 5.

Table 5: Weight distribution

Connection Paths Length Weight

1 8

2 4

3 2

The Pair Ranking algorithm also takes into account the number of

connection paths that the pair has. It sums the computed scores of all connection

paths of the pair.

For the movies domain, an additional assumption was made. Since a movie

may belong to more than one genre, e.g., “Alien” is classified as an action movie

and as a science fiction movie, the procedure had to consider candidate movies

only from genres that do not coincide with any of the genres to which the base

movie belongs. Hence, movies that belong to action or science fiction genre are

not possible candidates for the Alien movie.

The product of this step is located in the Pair folder of the dataset (Eichler

et al. 2018).

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

63

6.3.7. Output

Now that each movie holds a ranked list of possible candidates for serendipitous

suggestions, a final task is to present this information as the final output of the

dataset. Since the candidates list is ordered by score, the procedure just needs to

select the top-k pairs to filter out the least relevant elements. For the movies

domain, it only presents the top 3 elements.

The movie data that is present in the list include: movie title, DBpedia URI,

LinkedMDB URI and, naturally, the computed score. The first three data

attributes, which are needed for movie identification, are all included in the final

response of the Serendipity Movie Test Dataset because the client application

that will use it might adopt plain text to represent the movie entity or might also be

a Linked Data application that understands Linked Data URIs. Hence, a client

application is able to submit a movie URI and retrieve a list of URIs that are

serendipitously related to it. The fourth attribute, the computed score, is just an

evidence for the importance of the candidate movie.

6.4. Case Study Example

This section presents a case study example in order to illustrate how we structure

the data in each step of the construction of the Serendipity Movie Test Dataset.

The motivation of this section is twofold: (1) to exemplify how to use the data

provided in order to help using it; and (2) to provide a different perspective of the

dataset creation process.

As dataset partition plays a decisive role in the dataset creation process,

our initial movie list is divided by genre. The BaseList folder contains a set of

movie lists of different genres in JSON format. A movie list presents the same

information as depicted in Figure 9 of section 6.3.2. Table 6 shows a movie list

example.

Table 6: Romantic Comedy movies

Title Year

Pretty Woman 1990

When Harry Met Sally... 1989

Notting Hill 1999

Serendipity 2001

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

64

Curiously, Serendipity is indeed the name of a movie, an American

romantic film produced in 2001.

If there are linked data resources related to the movies in a movie list, this

new data is aggregated to the list. The URIMapping folder contains the updated

version of our movie lists. Table 7 below illustrates another sample of a movie

list. It is worth noticing that Table 7 makes use of DBpedia and LinkedMDB

namespaces in order to depict the URI examples.

Table 7: Romantic Comedy URIs

Title DBpedia LinkedMDB

Pretty Woman dbr:Pretty_Woman movie:38681

When Harry Met Sally... dbr:When_Harry_Met_Sally... movie:38172

Notting Hill dbr:Notting_Hill_(film) movie:536

Serendipity dbr:Serendipity_(film) movie:2452

Then, we retrieve the data about the movie and store it in the DataGraph

folder. We chose turtle (.ttl) format because it is one of the lightest alternatives to

represent linked data. The code below illustrates part of the data extracted about

a movie:
<http://data.linkedmdb.org/resource/film/2452>

a <http://data.linkedmdb.org/resource/movie/film> ;

<http://www.w3.org/2000/01/rdf-schema#label>

"Serendipity" ;

Figure 10 below exemplifies the Path Finding algorithm. We use the Box-

Arrow Notation to represent the Linked Data graph. Additionally, we use dashed

arrows to differ the connections that are specific to the Predator Movie data

graph, although the Path Finding algorithm considers the union of both.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

65

Figure 10: Serendipity-Predator connection paths

Considering the above data graph, the Path Finding algorithm extracts the

connection paths for CP(Serendipity,Predator) as:

• (Serendipity, Alan Silvestri (Music Contributor), Predator),

• (Serendipity, Alan Silvestri (Music Contributor), Predator2,

Predator),

• (Serendipity, Alan Silvestri (Music Contributor), Predator2,

Predator).

It is worth noticing that there are two connection paths of the form

(Serendipity, Alan Silvestri (Music Contributor), Predator2, Predator) because

there are two triples linking Predator and Predator2: (Predator,

mdb:movie/sequel, Predator2) and (Predator2, mdb:movie/prequel, Predator).

Therefore, the Pair Ranking algorithm assigns a score of 4 to the first

connection path because it has length 2, and the second and third connection

paths receive a score of 2, each. Thus, the final score for the pair (Serendipity,

Predator) is 8.

Data that depict information about a pair are stored in JSON format in the

Pair folder of the dataset.

Finally, the Pair Ranking algorithm orders all the pairs where the

Serendipity movie appears. The Pair Ranking algorithm also filters the three pairs

with higher scores. The final output for the Serendipity movie is depicted in Table

8, which represents the three movies that are more likely to produce

serendipitous suggestions for the Serendipity movie, according to the Serendipity

Movie Test Dataset. Therefore, any application that retrieves data about the

Serendipity movie might also include data about these three movies, as

serendipitous suggestions to the user.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

66

Table 8: Recommendations for Serendipity movie

Title Score

Identity 12

Predator 8

Cars 8

Since the final response includes movie titles and Linked Data URIs, an

application that uses Serendipity Movie Test Dataset might include links to the

RDF resources that these URIs represent. Recommendations are stored in JSON

format in the Recommendation folder of the dataset.

Before moving to the next section, we present another example, sketched

in Figure 11, to illustrate the Path Finding algorithm for the pair When Harry

meets Sally… and Misery.

Figure 11: WHMS-Misery connection paths

For this example, the Path Finding algorithm extracts the connection paths

for CP(When Harry meets Sally…,Misery) as:

• (When Harry meets Sally…, Rob Reiner (Director), Misery) that

appears four times,

• (When Harry meets Sally…, Marc Shaiman (Music Contributor),

Misery),

• (When Harry meets Sally…, Andrew Scheinman (Producer),

Misery), and

• (When Harry meets Sally…, Rob Reiner (Producer), Misery).

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

67

It is worth noticing that there are four connection paths of the form (When

Harry meets Sally…, Rob Reiner (Director), Misery) because there are two

properties linking each movie to its director, foaf:made and mdb:movie/Director.

Another information from Figure 11 is that LinkedMDB represents Rob Reiner

(Director) and Rob Reiner (Producer) as two distinct entities.

Since all connection paths CP(When Harry meets Sally…,Misery) have

length two, the Pair Ranking algorithm assigns a score of 4 to each connection

path found. Therefore, the final score for the pair (When Harry meets

Sally…,Misery) is 28.

Table 9 introduces the final output for the When Harry meets Sally… movie

since there was no third movie satisfying the requirements for serendipity

suggestion.

Table 9: Recommendations for WHMS movie

Title Score

Misery 28

Hairspray 4

6.5. Lessons Learned

This chapter presents the steps and design decisions involved in the construction

of the Serendipity Movie Test Dataset. The main challenges encountered can be

summarized as follows.

The dataset construction process is divided in steps so that the output of

each step is used as input for the following step. The motivation for this

requirement is twofold. First, the process does not need to be restarted if a single

step presents errors. On the contrary, in case an error occurs in a given step,

only later steps need to be reprocessed. Second, this allows each step to be

validated since the entire process can be restarted and the result of each step

can be compared with former results.

As happened with the SOL-Tool application, latency represented a critical

factor for the dataset construction process as the RDF data graphs are queried

from Linked Data live datasets. In order to address this issue, the RDF data

retrieval is restricted to a single step. This limited the impact of latency in the

overall execution of the dataset construction process.

A different strategy that we applied to address latency is to combine

multiple SPARQL queries in a single query with union clauses so that secondary

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

68

queries become unnecessary. Unfortunately, this strategy does not present the

desired outcome when the endpoint fails to respond.

It is worth noticing that different dataset endpoints present different

capabilities. In some circumstances, RDF dump files can be used as data

sources instead of remote dataset endpoints.

The initial proposal of our Linked Data benchmark dataset for serendipitous

suggestions included movies and music domain. The purpose of the Serendipity

Music Test Dataset was to suggest music artists that are serendipitously related

to a given music artist. The global classifier function that divides the universe of

artists in partitions is the music genre feature. The rest of this section

summarizes the challenges that interpose the construction of a serendipitous

music dataset.

We used the Musicbrainz9 dataset as the data source for searching entities

of the music domain. We applied the dataset construction process to the music

domain in a similar manner to the movie domain: relevant music entities were

extracted from Google Search results; those entities were mapped to RDF

resources of the Musicbrainz dataset using the same strategy as that adopted for

the LinkedMDB dataset. In spite of the easy start of the dataset creation, two

issues complicated the following steps.

The task of retrieving entity data faced one complication factor. In the music

domain, the number of SPARQL requests increased considerably since each

music artist presents connections to a high number of music tracks and related

entities. As a consequence, the performance decreased as a high number of

secondary requests are dispatched to the dataset endpoint taking much more

time to build the RDF data graph of a single source entity. Again, this factor can

be mitigated with the use of dump files or optimization techniques, such as the

map-reduce strategy.

We faced a similar problem when discovering connection paths. In the

Musicbrainz dataset, music tracks do not present a rich network of related

entities. As a consequence, there are not many connection paths connecting two

music artists through music tracks in the dataset. For this situation, a different

algorithm could be used to analyze the relatedness of two music artists from

different music genres. For instance, instead of extracting the connection paths,

keywords could be extracted from music tracks in order to compute the similarity

between a pair of musical artists.

9 http://dbtune.org/musicbrainz/

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

69

6.6. Chapter Summary

In this chapter, we described a dataset, called the Serendipity Movie Test

Dataset (Eichler et al. 2018), created to support the evaluation of approaches that

address the serendipity relatedness problem. The dataset includes 404 entities,

represented in DBpedia and in LinkedMDB, and pertaining to the movie domain,

from which 965 entity pairs were generated and ranked by a serendipity criterion.

In this chapter, we also present the main steps and decisions necessary to

build a serendipity benchmark dataset based on Linked Data.

According to our strategy, a pair of entities is understood to be

serendipitously related if the entities belong to different partitions (i.e.,

cinematographic genres) and yet share a reasonable amount of connections. The

ranking process considers the connection paths shared by the entities in a pair.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

7
Related Work

7.1.Introduction

Our research builds upon the combination of two topics of study: Linked Data

search applications and serendipity applications. Therefore, in order to position

our work, it is necessary to consider both areas of study and discuss the

challenges and opportunities of combining them.

7.2.Linked Data search applications

Heath and Bizer (2011) describe Linked Data search engines as applications that

“crawl the Web of Data and provide sophisticated query capabilities on top of the

complete data space”. Since the rise of the Web of Data, several applications

were developed with this purpose,adopting different approaches.

In order to enable a user-friendly interface, several applications provide

keyword-base search operations such as SWSE (Harth et al. 2008), Sig.ma

(Tummarello et al. 2010), KEYRY (Bergamaschi et al. 2011), (Haslhofer et al.

2013). This approach provides user interaction similar to that of popular search

engines, like Google, Bing and Yahoo. The application displays a search box

where the user can submit keywords related to the object that he is interested in

and, then, the application returns a list of results that match the search criteria.

The Semantic Web Search Engine – SWSE (Harth et al. 2008) is a search

engine that enables the keyword-based search and navigation of Linked Data

resources in an object-oriented manner. In order to achieve this goal, the SWSE

architecture implements components for crawling, integrating, indexing and

querying across multiple data sources.

Similarly, sig.ma (Tummarello et al. 2010) is a keyword search application

that aggregates data about a resource from multiple datasources.

Haslhofer et al. (2013) present a query expansion technique to improve the

search results and provide a more suitable response to the submitted query. The

SKOS vocabulary is used to enable two expansion techniques: term expansion

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

71

and URI expansion. In this way, a query can be expanded with the inclusion of

synonyms, broader or narrower terms.

As Freitas et al. (2012) point out, one characteristic of such approach is

that it favors usability with intuitive operations over query expressivity that

represents the ability of directly referencing elements of the dataset. This way,

two characteristics of the Web of Data encourage the relaxing of expressivity of

the keyword-base approach. First, given the scale of the Web of Data, it becomes

infeasible for users to know the datasets structure a priori (Freitas et al. 2012).

Second, it may be difficult to deal directly with the elements, since many datasets

do not work with human readable URIs.

To address this challenge, KEYRY (Bergamaschi et al. 2011) is a tool that

translates keyword-based queries to SPARQL queries. According to the KEYRY

approach, a matching algorithm is used to find the top-k elements that are best

described with the keyword terms and the elements found are used to generate

SPARQL queries. Finally, the generated queries are ranked in accordance with

relevance and conciseness.

A different approach of Linked Data search engines is to provide a

centralized endpoint of the Web of Data not only for humans but also for other

Linked Data applications. This approach commonly involves the use of a crawler

to index documents, extract metadata, compute rankings and discover relations

between documents. Sindice (Oren et al. 2008) is a search engine that provides

the location of documents about a given resource. By simply providing the

resource location, Sindice results may require additional analysis before they can

be directly used for a particular use case. In a similar way, Hartig et al. (2009)

and Watson (D’Aquin et al. 2008) resort to the use of crawlers in order to provide

a single endpoint to the entire Web of Data. Unlike the other works, Watson

considers data, document, hyperlinks and semantic links between them on its

analysis.

7.3.Serendipity applications

Serendipity can be used in the Linked Data scenario with the objective of

extracting data that, besides being relevant, discloses unexpected information.

Thus, in the second part of this chapter, we present studies with different

approaches to induce serendipity.

 In order to discuss the strategies that address serendipity, we present the

serendipity relatedness problem that consists of finding entities that are

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

72

serendipitously related to a source entity - in other words, entities that are able to

surprise the user. When addressing the serendipity relatedness problem, the

main adopted strategy (Ziegler et al. 2005, Abbassi et al. 2009, Zhang et al.

2012) consists of following these two basic steps: (1) divide the entities in

clusters according to distance metrics, (2) select entities that present a level of

similarity from different clusters. The main argument in favor of this approach is

that if the user is exposed to a more diverse result list, he is able to encounter

more unexpected items.

Ziegler et al. (2005) use a similarity function to compute entity distance

according to the adopted taxonomy, where entities are ranked through

collaborative filtering.

Similarly, Abbassi et al. (2009) define the notion of item regions in order to

introduce serendipity in a movie recommender system. Basically, in this work,

movies and users are grouped into regions based on attribute similarity whereas

collaborative filtering is used to identify regions that are underexposed to the

users. Therefore, this approach is able to suggest movies that are strongly

related to the user’s interest but which are not popular in his community.

AURALIST (Zhang et al. 2012) combines item-based collaborative filtering

with a clustering algorithm to produce serendipitous music recommendations. To

introduce serendipity among its results, AURALIST computes clusters of artists

that appear in user’s history based on similarity, then it selects artists at the edge

of the clusters. For computing similarity, AURALIST adopts a similar approach to

that of the Intra-List Similarity (Ziegler et al. 2005), with cosine similarity to

compute the similarity between items in a cluster of related artists.

In (Stankovic et al. 2011), the category representation of DBpedia is used

to suggest lateral topics to a given subject. This approach relies on a shortest

path distance algorithm to compute the proximity of the categories used in the

graph exploration.

In (Adamopoulos et al. 2011), a recommender system is presented. It aims

at improving user’s satisfaction by combining unexpectedness with utility. To

achieve this goal, the system calculates unexpectedness as the distance

between an unvisited item and the set of all items visited by the user. Utility is

understood as the overall rate of an item.

In the scenario of Web search, Bordino et al. (2013) create a recommender

system that induces serendipity by suggesting search queries that are relevant to

the content of a page. The system extracts entities representing the content of a

page and then builds a graph containing entities and queries. Finally, it adapts

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

73

the PageRank algorithm to this graph to associate entities with relevant query

suggestions.

As for exploratory search, Marie et al. (2013) use the spreading activation

algorithm combined with sampling techniques to rank resources that are strongly

related to the user’s interest. The authors argue that the spreading activation

function may be customized to different strategies, such as introducing

serendipitous connections.

A different approach is taken by FEEGLI (Rahman et al. 2015), that

augments search results with information extracted from Facebook ‘like’ activity

from the user. Results that match the user interests are highlighted with a

different color.

Given the difficulty to define and analyze serendipity (Iaquinta et al. 2008),

most studies opt to conduct experiments with users in order to gather feedback

about how their approaches perform in suggesting serendipitous content (André

et al. 2009b, Passant 2010b, Stankovic et al. 2011, Zhang et al. 2012, Marie et

al. 2013, Taramigkou et al. 2013). As a consequence of this option, it turns out to

be difficult to reproduce experiments and compare different strategies.

When considering an automated form of evaluating serendipity, the most

popular approach consists of measuring the unexpectedness of the results by

comparing the acquired results with a more primitive baseline system, as

proposed in (Murakami et al. 2007, Ge et al. 2010). However, one drawback of

this approach is that the evaluation is sensitive to the baseline system, as

Kaminskas and Bridge (2014) pointed out.

To the best of our knowledge, at the time of this writing, there are no

currently adequate benchmarks to equally compare different approaches.

7.4.Summary

The objective of this chapter is to position our work by comparing the projects

presented in this thesis with the literature of Linked Data search applications and

serendipity.

The SOL-Tool combines some characteristics of (Stankovic et al. 2011).

Similarly to our approach with analogy, (Stankovic et al. 2011) rely on the

category representation of DBpedia to present unexpected suggestions. Although

our approach uses the category structure of DBpedia, it does not depend on any

specific category while (Stankovic et al. 2011) uses a set of categories as a

starting point for the proximity computation.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

74

The Serendipitous response for a query strategy (chapter 3) present similar

behavior as the query expansion technique proposed in (Haslhofer et al. 2013).

While (Haslhofer et al. 2013) relies on the SKOS vocabulary to guide the query to

related content, our approach uses serendipity patterns. Furthermore, the

Serendipitous response for a query strategy augments the search results

similarly to FEEGLI. While FEEGLI highlights only the information that matches

the ‘like’ activity, the SOL-Tool search engine provides new information related to

search results and also provides some explanation of the connection by using the

RDF syntax.

The serendipity definition presented in Serendipity Movie Test Dataset

adopts a similar strategy to that detailed in (Ziegler et al. 2005, Abbassi et al.

2009, Zhang et al. 2012). Our strategy consists of dividing the datasets in

partitions based on a global feature, genre, and linking entities from different

partitions according to similarity criteria.

Additionally, the dataset creation process described in chapter 6 resembles

the method used in (Herrera et al. 2017) in that both studies exploit linked data

graph structures.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

8
Conclusions and Future Work

8.1. Summary of the Results

In recent years, the World Wide Web witnessed a second revolution. The

emergence of the Web of Data, a global data space where data is publicly

available, enabled the creation of a new class of web applications. These

applications must cope with data abundance in order to achieve their goals.

In this thesis, we focused in the development of approaches that address

the serendipity relatedness problem, i.e., the task of finding entities that are

serendipitously related to a source entity. To address this goal, this thesis

presents novel approaches to embody serendipity in the search process resulting

in four contributions to the field.

The first contribution is presented in Chapter 3 with a query orchestration

process. The query orchestration process encompasses different strategies in

order to adapt the query execution and provide a more complete response to the

user’s query. As a result, the process is composed of three strategies that add

serendipity to the query process: Serendipitous response for a Query,

Serendipitous alternatives for a Query and Serendipitous rebalancing of Query

results. This contribution can be very useful for circumstances in which the

normal execution of the query does not produce sufficient information.

The second contribution is presented in Chapter 4, which formalizes a set

of serendipity patterns to capture serendipity in the context of Linked Data

search. These serendipity patterns are inspired in basic characteristics of

serendipitous events, such as, analogy, unexpectedness and disturbance. The

serendipity patterns can be used for capturing serendipitous connections on live

Linked Data datasets and also increase the user satisfaction by providing

interesting and non-obvious related entities.

The third contribution of this thesis is the Serendipity Over Linked Data

Search Tool – SOL-Tool, that is presented in Chapter 5. SOL-Tool is a Linked

Data application that implements the ideas of Chapter 3 and Chapter 4.

Additionally, the SOL-Tool modular architecture was designed to not only

address the main challenges of a Linked Data search application but also support

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

76

extensibility so that new instances of its components can be created as needed.

The experimental results present a promissory score of 90% of unexpectedness

for real-world scenarios in the music domain.

The second and third contributions resulted in (Eichler et al. 2017), a

publication that was presented at the 2017 CAiSE Conference. An extended

version of this study encompassing the first, the second and the third

contributions is in preparation to be submitted to a journal.

The fourth contribution of this thesis is a benchmark construction process

that extracts entities, graphs and paths from the RDF datasets and is presented

in Chapter 6. Along with the benchmark construction process, we reported the

steps and design decisions involved in the construction. The steps are structured

and can be extended to capture different particularities of the retrieved data, the

given domain or the benchmark goal.

The fifth contribution of this thesis is the Serendipity Movie Test Dataset,

also presented in Chapter 6. The Serendipity Movie Test Dataset is a

serendipitous suggestions benchmark for the movies domain and can be used to

support the evaluation of approaches that address the serendipity relatedness

problem.

The fourth and fifth contribution is under revision to be submitted for

publication.

8.2. Suggested Future Work

This section addresses the possibilities for future work of the two projects

reported in this thesis: the Serendipity Over Linked Data Search Tool – SOL-Tool

and the Serendipity Movie Test Dataset.

The SOL-Tool is an application that encompasses different strategies to

enhance the search process by introducing serendipity patterns over the results.

The experimental results present a promising score of 90% of unexpectedness

for real-world scenarios in the music domain.

Nevertheless, the implementation of the SOL-Tool is ongoing work. In

parallel, we are designing further experiments to measure the user degree of

satisfaction and the quality of the serendipitous results, which proved to be a

challenging goal. This qualitative evaluation enables the analysis of what

strategies are more useful for the users.

Additionally, another future work we intend to conduct is to reprocess the

automated experiments with the SOL-Tool with the goal of evaluating each

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

77

serendipity pattern separately. This will enable a more granulated view of the

impact of each serendipity pattern in the search process execution.

Moreover, it is worth noticing that although the SOL-Tool application

addressed serendipity for the music domain, it could be used for several other

domains by extending some of its components. In fact, some components are

already generically designed, such as, Surprising Observation,Latent Goals and

Inversion Query Executor or Wrong Hypothesis Query Builder. As future work, we

plan to extend the SOL-Tool architecture in order to address other domains, such

as movies, books and arts. This will enable the SOL-Tool application to be

explored in a wider range of scenarios.

Finally, another future work we intend to conduct is the development of a

keyword-based search application that shall use the SOL-Tool search engine to

locate Linked Data serendipitous content, which will avoid the complexity of

writing SPARQL queries.

The Serendipity Movie Test Dataset was created to support the evaluation

of approaches that address the serendipity relatedness problem. The dataset

includes 404 entities, represented in DBpedia and in LinkedMDB, and pertaining

to the movie domain. As future work, we plan to take advantage of the data

retrieved to construct different classes of dataset benchmarks. Indeed, the

Serendipity Movie Test Dataset is designed to support extensibility and

customization by adopting different steps for dataset creation.

As another future work, we intend to apply the proposed strategy to

different domains, such as Music and Arts, so that the dataset could be explored

in additional scenarios. In fact, the dataset construction process may consider

multiple domains in the construction of a single dataset in order to capture cross

domain serendipity connections.

Additionally, the creation of a benchmark dataset for serendipity in the

Music domain will enable new opportunities of study. For instance, the entities

encountered by the QueryExecutors of SOL-Tool could be evaluated by this new

dataset.

Finally, we intend to conduct the design and execution of experiments with

the users’ participation, in order to measure their degree of satisfaction as the

quality of the serendipitous suggestions.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

9
Bibliography

1. ABBASSI, Zeinab et al. Getting recommender systems to think outside the

box. In: Proceedings of the third ACM conference on Recommender
systems. ACM, 2009. p. 285-288.

2. ABELE, Andrejs et al. Linking Open Data cloud diagram (2017). Disponível

em: <http://lod-cloud.net/> Acesso em: 12 jun. 2018.

3. ADAMOPOULOS, Panagiotis; TUZHILIN, Alexander. On Unexpectedness in

Recommender Systems: Or How to Expect the Unexpected. In: Workshop
on Novelty and Diversity in Recommender Systems, at the 5th ACM
International Conference on Recommender Systems. 2011. p. 11-18.

4. ANDRÉ, Paul et al. Discovery is never by chance: designing for (un)

serendipity. In: Proceedings of the seventh ACM conference on Creativity
and cognition. ACM, 2009a. p. 305-314.

5. ANDRÉ, Paul; TEEVAN, Jaime; DUMAIS, Susan T. From x-rays to silly putty

via Uranus: serendipity and its role in web search. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM,

2009b. p. 2033-2036.

6. BERGAMASCHI, Sonia et al. Understanding linked open data through

keyword searching: the KEYRY approach. In: Proceedings of the 1st
International Workshop on Linked Web Data Management. ACM, 2011. p.

34-35.

7. BERNERS-LEE, Tim. Linked Data-Design Issues. 2009. Disponível em:

<http://www.w3.org/DesignIssues/LinkedData.html> Acesso em: 12 jun.

2018.

8. BIZER, Christian; HEATH, Tom; BERNERS-LEE, Tim. Linked data-the story

so far. International journal on semantic web and information systems,

v. 5, n. 3, p. 1-22, 2009.

9. BORDINO, Ilaria et al. From machu_picchu to rafting the urubamba river:

anticipating information needs via the entity-query graph. In: Proceedings of
the sixth ACM international conference on Web search and data mining.

ACM, 2013. p. 275-284.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

79

10. BRICKLEY, Dan; GUHA, Ramanathan V.; MCBRIDE, Brian. RDF Schema

1.1. W3C recommendation, v. 25, p. 2004-2014, 2014.

11. BURKE, Kenneth. Four master tropes. The Kenyon Review, v. 3, n. 4, p.

421-438, 1941.

12. CUPPENS, Frédéric; DEMOLOMBE, Robert. Cooperative Answering: A

Methodology to Provide Intelligent Access to databases. In: Expert Database
Conf. 1988. p. 621-643.

13. CYGANIAK, R., WOOD, D., LANTHALER, M. RDF 1.1 Concepts and

Abstract Syntax. W3C Recommendation. Disponível em:

<http://www.w3.org/TR/rdf11-concepts/> Acesso em: 12 jun. 2018.

14. D'AQUIN, Mathieu et al. Toward a new generation of semantic web
applications. IEEE Intelligent Systems, v. 23, n. 3, p. 20-28, 2008.

15. DE BRUIJN, Oscar; SPENCE, Robert. A new framework for theory-based

interaction design applied to serendipitous information retrieval. ACM
transactions on computer-human interaction (TOCHI), v. 15, n. 1, p. 5,

2008.

16. EGLESE, R. W. Simulated annealing: a tool for operational research.

European journal of operational research, v. 46, n. 3, p. 271-281, 1990.

17. EICHLER, J. S. A.; CASANOVA, M. A.; FURTADO, A. L.; LEME, L. A. P. P.;

RUBACK, L.; Lopes, G. R.; Nunes, B. P; Raffaetà, A. and Renso, C.

Searching linked data with a twist of serendipity. CAISE2017, 2017.

18. EICHLER, J. S. A.; CASANOVA, M. A.; FURTADO, A. L. Serendipity Movie
Test Data. figshare. Fileset. Disponível em:

<http://doi.org/10.6084/m9.figshare.6066533.v2> Acesso em: 12 jun. 2018.

19. ERDELEZ, Sandra. Information encountering: It's more than just bumping into

information. Bulletin of the Association for Information Science and

Technology, v. 25, n. 3, p. 26-29, 1999.

20. FREITAS, André et al. Querying heterogeneous datasets on the linked data

web: challenges, approaches, and trends. IEEE Internet Computing, v. 16,

n. 1, p. 24-33, 2012.

21. GE, Mouzhi; DELGADO-BATTENFELD, Carla; JANNACH, Dietmar. Beyond

accuracy: evaluating recommender systems by coverage and serendipity.

In: Proceedings of the fourth ACM conference on Recommender
systems. ACM, 2010. p. 257-260.

22. GOFFMAN, Erving. Stigma Englewood Cliffs. NJ: Spectrum, 1963.

23. HARRIS, Steve; SEABORNE, Andy; PRUD’HOMMEAUX, Eric. SPARQL 1.1

query language. W3C recommendation, v. 21, n. 10, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

80

24. HARTH, Andreas et al. SWSE: Answers before links!. In: Proceedings of the
2007 International Conference on Semantic Web Challenge-Volume 295.

CEUR-WS. org, 2007. p. 137-144.

25. HARTIG, Olaf; BIZER, Christian; FREYTAG, Johann-Christoph. Executing

SPARQL queries over the web of linked data. In: International Semantic
Web Conference. Springer, Berlin, Heidelberg, 2009. p. 293-309.

26. HASLHOFER, Bernhard; MARTINS, Flávio; MAGALHÃES, João. Using

SKOS vocabularies for improving web search. In: Proceedings of the 22nd
International Conference on World Wide Web. ACM, 2013. p. 1253-1258.

27. HEATH, Tom; BIZER, Christian. Linked data: Evolving the web into a global

data space. Synthesis lectures on the semantic web: theory and
technology, v. 1, n. 1, p. 1-136, 2011.

28. HERRERA, José Eduardo Talavera et al. An Entity Relatedness Test

Dataset. In: International Semantic Web Conference. Springer, Cham,

2017. p. 193-201.

29. IAQUINTA, Leo et al. Introducing serendipity in a content-based

recommender system. In: Hybrid Intelligent Systems, 2008. HIS'08. Eighth
International Conference on. IEEE, 2008. p. 168-173.

30. ISELE, Robert; JENTZSCH, Anja; BIZER, Christian. Silk server-adding

missing links while consuming linked data. In: Proceedings of the First
International Conference on Consuming Linked Data-Volume 665.

CEUR-WS. org, 2010. p. 85-96.

31. KAMINSKAS, Marius; BRIDGE, Derek. Measuring surprise in recommender

systems. In: Proceedings of the Workshop on Recommender Systems
Evaluation: Dimensions and Design (Workshop Programme of the 8th
ACM Conference on Recommender Systems). 2014.

32. KATZ, Leo. A new status index derived from sociometric analysis.

Psychometrika, v. 18, n. 1, p. 39-43, 1953.

33. KIRKPATRICK, Scott. Optimization by simulated annealing: Quantitative

studies. Journal of statistical physics, v. 34, n. 5-6, p. 975-986, 1984.

34. LESKOVEC, Jure; RAJARAMAN, Anand; ULLMAN, Jeffrey David. Mining of
massive datasets. Cambridge University Press, 2014.

35. LIM, Andrew; RODRIGUES, Brian; ZHANG, Xingwen. A simulated annealing

and hill-climbing algorithm for the traveling tournament problem. European
Journal of Operational Research, v. 174, n. 3, p. 1459-1478, 2006.

36. LOT, Fernand. Les Jeux du hasard et du génie: le rôle de la chance dans la

découverte.. Plon, 1956.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

81

37. MARIE, Nicolas et al. Discovery hub: on-the-fly linked data exploratory

search. In: Proceedings of the 9th International Conference on Semantic
Systems. ACM, 2013. p. 17-24.

38. MELL, Peter et al. The NIST definition of cloud computing. 2011.

39. MURAKAMI, Tomoko; MORI, Koichiro; ORIHARA, Ryohei. Metrics for

evaluating the serendipity of recommendation lists. In: Annual Conference
of the Japanese Society for Artificial Intelligence. Springer, Berlin,

Heidelberg, 2007. p. 40-46.

40. NGOMO, Axel-Cyrille Ngonga; AUER, Sören. Limes-a time-efficient approach

for large-scale link discovery on the web of data. In: IJCAI. 2011. p. 2312-

2317.

41. NUNES, Bernardo Pereira et al. SCS connector-Quantifying and visualising

semantic paths between entity Pairs. In: European Semantic Web
Conference. Springer, Cham, 2014. p. 461-466.

42. OREN, Eyal et al. Sindice.com: a document-oriented lookup index for open

linked data. International Journal of Metadata, Semantics and
Ontologies, v. 3, n. 1, p. 37-52, 2008.

43. PASSANT, Alexandre. dbrec—music recommendations using DBpedia.

In: International Semantic Web Conference. Springer, Berlin, Heidelberg,

2010a. p. 209-224.

44. PASSANT, Alexandre. Measuring Semantic Distance on Linking Data and

Using it for Resources Recommendations. In: AAAI spring symposium:
linked data meets artificial intelligence. 2010b. p. 123.

45. PICCIOLI, Alessio et al. Linked Open Data Portal: How to Make Use of

Linked Data to Generate Serendipity. In: Proceedings of the Third AIUCD
Annual Conference on Humanities and Their Methods in the Digital
Ecosystem. ACM, 2014. p. 15.

46. RAHMAN, Ataur; WILSON, Max L. Exploring opportunities to facilitate

serendipity in search. In: Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval.
ACM, 2015. p. 939-942.

47. SHANI, Guy; GUNAWARDANA, Asela. Evaluating recommendation systems.

In: Recommender systems handbook. Springer, Boston, MA, 2011. p. 257-

297.

48. STANKOVIC, Milan; BREITFUSS, Werner; LAUBLET, Philippe. Linked-data

based suggestion of relevant topics. In: Proceedings of the 7th
International Conference on Semantic Systems. ACM, 2011. p. 49-55.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

82

49. SZU, Harold; & HARTLEY, Ralph. Fast simulated annealing. Physics letters
A, v. 122, n. 3-4, p. 157-162, 1987.

50. TARAMIGKOU, Maria et al. Escape the bubble: Guided exploration of music

preferences for serendipity and novelty. In: Proceedings of the 7th ACM
conference on Recommender systems. ACM, 2013. p. 335-338.

51. TOMS, Elaine G. et al. Serendipitous Information Retrieval. In: DELOS
Workshop: Information Seeking, Searching and Querying in Digital
Libraries. 2000. p. 17-20.

52. TUMMARELLO, Giovanni et al. Sig.ma: Live views on the web of data. Web
Semantics: Science, Services and Agents on the World Wide Web, v. 8,

n. 4, p. 355-364, 2010.

53. VAN ANDEL, Pek. Anatomy of the unsought finding. serendipity: Orgin,

history, domains, traditions, appearances, patterns and programmability. The
British Journal for the Philosophy of Science, v. 45, n. 2, p. 631-648,

1994.

54. VOLZ, Julius et al. Silk-A Link Discovery Framework for the Web of

Data. LDOW, v. 538, 2009.

55. WEBBER, Bonnie Lynn. Questions, answers and responses: Interacting with

knowledge-base systems. In: On Knowledge Base Management Systems.

Springer, New York, NY, 1986. p. 365-402.

56. WEIBEL, Stuart et al. Dublin core metadata for resource discovery. 1998.

57. ZHANG, Yuan Cao et al. Auralist: introducing serendipity into music

recommendation. In: Proceedings of the fifth ACM international
conference on Web search and data mining. ACM, 2012. p. 13-22.

58. ZIEGLER, Cai-Nicolas et al. Improving recommendation lists through topic

diversification. In: Proceedings of the 14th international conference on
World Wide Web. ACM, 2005. p. 22-32.

DBD
PUC-Rio - Certificação Digital Nº 1421612/CA

